• Title/Summary/Keyword: Biological Resources

Search Result 3,786, Processing Time 0.037 seconds

Environmental cooperation strategies of Korean Peninsula considering International Environmental Regimes (한반도 환경협력을 위한 국제사회 동향과 미래 협력방안)

  • Chul-Hee Lim;Hyun-Ah Choi
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.2
    • /
    • pp.224-238
    • /
    • 2022
  • North Korea has actively participated in the international community related to environmental agreements. It has proposed various environmental policies internally since the Kim Jong-un regime. In particular, it emphasizes activities related to climate change response, the Sustainable Development Goals, and the conservation of ecosystems including forests and wetlands. In this study, a new security cooperation plan was proposed with an understanding of the climate crisis and environmental regime as a starting point. To this end, trends and recent activities for climate-environment cooperation in the international community and on the Korean Peninsula were analyzed. In addition, North Korea's conditions for cooperation on the Korean Peninsula, technology demand, and the projected future environment of the Korean Peninsula were dealt with. Ultimately, through advice of experts, we were able to discover cooperation agendas by sector and propose short-term and long-term environmental cooperation strategies for the Korean Peninsula based on them. In this study, conditions and directions for cooperation in fields of climate technology, biological resources, air/weather, water environment, biodiversity, renewable energy, bioenergy, and so on were considered comprehensively. Among 21 cooperation agendas discovered in this study, energy showed the largest number of areas. Renewable energy, forest resources, and environmental and meteorological information stood out as agendas that could be cooperated in the short term. As representative initiatives, joint promotion of 'renewable energy' that could contribute to North Korea's energy demand and carbon neutrality and 'forest cooperation' that could be recognized as a source of disaster reduction and greenhouse gas sinks were suggested.

Evaluation of estuary reservoir management based on robust decision making considering water use-flood control-water quality under Climate Change (이수-치수-수질을 고려한 기후변화 대응 로버스트 기반 담수호 관리 평가)

  • Kim, Seokhyeon;Hwang, Soonho;Kim, Sinae;Lee, Hyunji;Kwak, Jihye;Kim, Jihye;Kang, Moonseong
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.6
    • /
    • pp.419-429
    • /
    • 2023
  • The objective of this study was to determine the management water level of an estuary reservoir considering three aspects: the water use, flood control and water quality, and to use a robust decision-making to consider uncertainty due to climate change. The watershed-reservoir linkage model was used to simulate changes in inflow due to climate change, and changes in reservoir water level and water quality. Five management level alternatives ranging from -1.7 El.m to 0.2 El.m were evaluated under the SSP1, 2, 3, and 5 scenariosof the ACCESS-CM2 Global Climate Model. Performance indicators based on period-reliability were calculated for robust decision-making considering the three aspects, and regret was used as a decision indicator to identify the alternatives with the minimum maximum regret. Flood control failure increased as the management level increased, while the probability of water use failure increased as the management level decreased. The highest number of failures occurred under the SSP5 scenario. In the water quality sector, the change in water quality was relatively small with an increase in the management level due to the increase in reservoir volume. Conversely, a decrease in the management level resulted in a more significant change in water quality. In the study area, the estuary reservoir was found to be problematic when the change in water quality was small, resulting in more failures.

Development of Eggs, Larvae and Juveniles of the Hypomesus nipponensis (Pisces:Osmeridae) from Western Coastal, Daeho-man (서해안 대호만에 서식하는 빙어 Hypomesus nipponensis의 난발생 및 자치어 형태발달)

  • Jae-Min Park;Dong-Jae Yoo;Jeong-Nam Yu;Seong-Ryul Lim;Dal-Young Kim;Kyeong-Ho Han
    • Korean Journal of Ichthyology
    • /
    • v.36 no.2
    • /
    • pp.120-128
    • /
    • 2024
  • In this study, the characteristics of the early life history were investigated for the Hypomesus nipponensis in the west coast Daeho Bay. Egg's were adhesive eggs that had the property of sinking in water in a circular shape. The size of mature eggs was 0.52~0.66 (average of 0.59±0.03, n=30) mm. The hatching time took 140 hours at a water temperature of 22~23℃. Immediately after hatching, the yolk sac larvae was 4.78~5.60 (average of 5.25±0.26, n=30) mm in total length, and the mouth and anus were not completely opened. On the 7 days after hatching, the preflexion larvae was 5.91~6.64 (6.32±0.21) mm in total length, and the mouth and anus were opened, and feeding activities were started. On the 25 days after hatching, the flexion larvae was 9.70~12.3 (10.2±0.63) mm in total length, and the end of the spine at the tail end began to bend upward. On the 42 days after hatching, the postflexion larvae was 14.1~18.8 (16.9±1.44) mm in total length, and the end of the spine at the tail was completely bent at 45°. On the 56 days after hatching, it reached the integer with 10 dorsal fins, 16 anal fins, 7 ventral fins, and 19 caudal fins. According to the study, there were spot-shaped melanophore vesicles under the pectoral fins during the incubation period, the different positions of the egg yolk compared to the battlefield, the deposition of melanophore vesicles on the back and under the body of the caudal part during the postflexion larvae period, and the absence of melanophore vesicles on the torso between the head and the starting point of the dorsal fin. It was distinguished from related species in that melanophore vesicles were deposited in one row from the back of the body to the caudal part during the juvenile period.

Study on water quality prediction in water treatment plants using AI techniques (AI 기법을 활용한 정수장 수질예측에 관한 연구)

  • Lee, Seungmin;Kang, Yujin;Song, Jinwoo;Kim, Juhwan;Kim, Hung Soo;Kim, Soojun
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.151-164
    • /
    • 2024
  • In water treatment plants supplying potable water, the management of chlorine concentration in water treatment processes involving pre-chlorination or intermediate chlorination requires process control. To address this, research has been conducted on water quality prediction techniques utilizing AI technology. This study developed an AI-based predictive model for automating the process control of chlorine disinfection, targeting the prediction of residual chlorine concentration downstream of sedimentation basins in water treatment processes. The AI-based model, which learns from past water quality observation data to predict future water quality, offers a simpler and more efficient approach compared to complex physicochemical and biological water quality models. The model was tested by predicting the residual chlorine concentration downstream of the sedimentation basins at Plant, using multiple regression models and AI-based models like Random Forest and LSTM, and the results were compared. For optimal prediction of residual chlorine concentration, the input-output structure of the AI model included the residual chlorine concentration upstream of the sedimentation basin, turbidity, pH, water temperature, electrical conductivity, inflow of raw water, alkalinity, NH3, etc. as independent variables, and the desired residual chlorine concentration of the effluent from the sedimentation basin as the dependent variable. The independent variables were selected from observable data at the water treatment plant, which are influential on the residual chlorine concentration downstream of the sedimentation basin. The analysis showed that, for Plant, the model based on Random Forest had the lowest error compared to multiple regression models, neural network models, model trees, and other Random Forest models. The optimal predicted residual chlorine concentration downstream of the sedimentation basin presented in this study is expected to enable real-time control of chlorine dosing in previous treatment stages, thereby enhancing water treatment efficiency and reducing chemical costs.

A Study of Organic Matter Fraction Method of the Wastewater by using Respirometry and Measurements of VFAs on the Filtered Wastewater and the Non-Filtered Wastewater (여과한 하수와 하수원액의 VFAs 측정과 미생물 호흡률 측정법을 이용한 하수의 유기물 분액 방법에 관한 연구)

  • Kang, Seong-wook;Cho, Wook-sang
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.1
    • /
    • pp.58-72
    • /
    • 2009
  • In this study, the organic matter and biomass was characterized by using respirometry based on ASM No.2d (Activated Sludge Model No.2d). The activated sludge models are based on the ASM No.2d model, published by the IAWQ(International Association on Water Quality) task group on mathematical modeling for design and operation of biological wastewater treatment processes. For this study, OUR(Oxygen Uptake Rate) measurements were made on filtered as well as non-filtered wastewater. Also, GC-FID and LC analysis were applied for the estimation of VFAs(Volatile Fatty Acids) COD(S_A) in slowly bio-degradable soluble substrates of the ASM No.2d. Therefore, this study was intended to clearly identify slowly bio-degradable dissolved materials(S_S) and particulate materials(X_I). In addition, a method capable of determining the accurate time to measure non-biodegradable COD(S_I), by the change of transition graphs in the process of measuring microbial OUR, was presented in this study. Influent fractionation is a critical step in the model calibrations. From the results of respirometry on filtered wastewater, the fraction of fermentable and readily biodegradable organic matter(S_F), fermentation products(S_A), inert soluble matter(S_I), slowly biodegradable matter(X_S) and inert particular matter(X_I) was 33.2%, 14.1%, 6.9%, 34.7%, 5.8%, respectively. The active heterotrophic biomass fraction(X_H) was about 5.3%.

Sesquiterpenoids Bioconversion Analysis by Wood Rot Fungi

  • Lee, Su-Yeon;Ryu, Sun-Hwa;Choi, In-Gyu;Kim, Myungkil
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.19-20
    • /
    • 2016
  • Sesquiterpenoids are defined as $C_{15}$ compounds derived from farnesyl pyrophosphate (FPP), and their complex structures are found in the tissue of many diverse plants (Degenhardt et al. 2009). FPP's long chain length and additional double bond enables its conversion to a huge range of mono-, di-, and tri-cyclic structures. A number of cyclic sesquiterpenes with alcohol, aldehyde, and ketone derivatives have key biological and medicinal properties (Fraga 1999). Fungi, such as the wood-rotting Polyporus brumalis, are excellent sources of pharmaceutically interesting natural products such as sesquiterpenoids. In this study, we investigated the biosynthesis of P. brumalis sesquiterpenoids on modified medium. Fungal suspensions of 11 white rot species were inoculated in modified medium containing $C_6H_{12}O_6$, $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ for 20 days. Cultivation was stopped by solvent extraction via separation of the mycelium. The metabolites were identified as follows: propionic acid (1), mevalonic acid lactone (2), ${\beta}$-eudesmane (3), and ${\beta}$-eudesmol (4), respectively (Figure 1). The main peaks of ${\beta}$-eudesmane and ${\beta}$-eudesmol, which were indicative of sesquiterpene structures, were consistently detected for 5, 7, 12, and 15 days These results demonstrated the existence of terpene metabolism in the mycelium of P. brumalis. Polyporus spp. are known to generate flavor components such as methyl 2,4-dihydroxy-3,6-dimethyl benzoate; 2-hydroxy-4-methoxy-6-methyl benzoic acid; 3-hydroxy-5-methyl phenol; and 3-methoxy-2,5-dimethyl phenol in submerged cultures (Hoffmann and Esser 1978). Drimanes of sesquiterpenes were reported as metabolites from P. arcularius and shown to exhibit antimicrobial activity against Gram-positive bacteria such as Staphylococcus aureus (Fleck et al. 1996). The main metabolites of P. brumalis, ${\beta}$-Eudesmol and ${\beta}$-eudesmane, were categorized as eudesmane-type sesquiterpene structures. The eudesmane skeleton could be biosynthesized from FPP-derived IPP, and approximately 1,000 structures have been identified in plants as essential oils. The biosynthesis of eudesmol from P. brumalis may thus be an important tool for the production of useful natural compounds as presumed from its identified potent bioactivity in plants. Essential oils comprising eudesmane-type sesquiterpenoids have been previously and extensively researched (Wu et al. 2006). ${\beta}$-Eudesmol is a well-known and important eudesmane alcohol with an anticholinergic effect in the vascular endothelium (Tsuneki et al. 2005). Additionally, recent studies demonstrated that ${\beta}$-eudesmol acts as a channel blocker for nicotinic acetylcholine receptors at the neuromuscular junction, and it can inhibit angiogenesis in vitro and in vivo by blocking the mitogen-activated protein kinase (MAPK) signaling pathway (Seo et al. 2011). Variation of nutrients was conducted to determine an optimum condition for the biosynthesis of sesquiterpenes by P. brumalis. Genes encoding terpene synthases, which are crucial to the terpene synthesis pathway, generally respond to environmental factors such as pH, temperature, and available nutrients (Hoffmeister and Keller 2007, Yu and Keller 2005). Calvo et al. described the effect of major nutrients, carbon and nitrogen, on the synthesis of secondary metabolites (Calvo et al. 2002). P. brumalis did not prefer to synthesize sesquiterpenes under all growth conditions. Results of differences in metabolites observed in P. brumalis grown in PDB and modified medium highlighted the potential effect inorganic sources such as $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ on sesquiterpene synthesis. ${\beta}$-eudesmol was apparent during cultivation except for when P. brumalis was grown on $MgSO_4$-free medium. These results demonstrated that $MgSO_4$ can specifically control the biosynthesis of ${\beta}$-eudesmol. Magnesium has been reported as a cofactor that binds to sesquiterpene synthase (Agger et al. 2008). Specifically, the $Mg^{2+}$ ions bind to two conserved metal-binding motifs. These metal ions complex to the substrate pyrophosphate, thereby promoting the ionization of the leaving groups of FPP and resulting in the generation of a highly reactive allylic cation. Effect of magnesium source on the sesquiterpene biosynthesis was also identified via analysis of the concentration of total carbohydrates. Our current study offered further insight that fungal sesquiterpene biosynthesis can be controlled by nutrients. To profile the metabolites of P. brumalis, the cultures were extracted based on the growth curve. Despite metabolites produced during mycelia growth, there was difficulty in detecting significant changes in metabolite production, especially those at low concentrations. These compounds may be of interest in understanding their synthetic mechanisms in P. brumalis. The synthesis of terpene compounds began during the growth phase at day 9. Sesquiterpene synthesis occurred after growth was complete. At day 9, drimenol, farnesol, and mevalonic lactone (or mevalonic acid lactone) were identified. Mevalonic acid lactone is the precursor of the mevalonic pathway, and particularly, it is a precursor for a number of biologically important lipids, including cholesterol hormones (Buckley et al. 2002). Farnesol is the precursor of sesquiterpenoids. Drimenol compounds, bi-cyclic-sesquiterpene alcohols, can be synthesized from trans-trans farnesol via cyclization and rearrangement (Polovinka et al. 1994). They have also been identified in the basidiomycota Lentinus lepideus as secondary metabolites. After 12 days in the growth phase, ${\beta}$-elemene caryophyllene, ${\delta}$-cadiene, and eudesmane were detected with ${\beta}$-eudesmol. The data showed the synthesis of sesquiterpene hydrocarbons with bi-cyclic structures. These compounds can be synthesized from FPP by cyclization. Cyclic terpenoids are synthesized through the formation of a carbon skeleton from linear precursors by terpene cyclase, which is followed by chemical modification by oxidation, reduction, methylation, etc. Sesquiterpene cyclase is a key branch-point enzyme that catalyzes the complex intermolecular cyclization of the linear prenyl diphosphate into cyclic hydrocarbons (Toyomasu et al. 2007). After 20 days in stationary phase, the oxygenated structures eudesmol, elemol, and caryophyllene oxide were detected. Thus, after growth, sesquiterpenes were identified. Per these results, we showed that terpene metabolism in wood-rotting fungi occurs in the stationary phase. We also showed that such metabolism can be controlled by magnesium supplementation in the growth medium. In conclusion, we identified P. brumalis as a wood-rotting fungus that can produce sesquiterpenes. To mechanistically understand eudesmane-type sesquiterpene biosynthesis in P. brumalis, further research into the genes regulating the dynamics of such biosynthesis is warranted.

  • PDF

Management of Recycled Nutrient Resources using Livestock Waste in Large-Scale Environment-Friendly Agricultural Complex (광역친환경농업단지의 경축순환자원 양분관리)

  • Moon, Young-Hun;Ahn, Byung-Koo;Cheong, Seong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.177-184
    • /
    • 2012
  • This experiment was carried out to investigate soil properties and the requirement of livestock manure compost in a large-scale environment-friendly agricultural complex (EFAC), Gosan, Wanju-gun, Jeonbuk. Total cultivation area of major crops was 2,353 ha. This complex area included different types of environment-friendly cropping sections (402.9ha) and livestock farming including 21,077 Korean beef cattle, 1,099 dairy cow, and 32,993 hog. Amount of livestock waste carried in to Resource Center for Crop and Livestock Farming (RCCLF) was 32 Mg per day and the production of manure compost was 9,600 Mg per year. The manure contained 1.4% total nitrogen (T-N), 2.7% phosphorus as $P_2O_5$, 2.1% potassium as $K_2O$, 0.9% magnesium as MgO, 2.5% calcium as CaO. Amount of compost used in the EFAC was 6,588 Mg per year. Soil pH values in the EFAC were varied as follows: 78.1% of paddy field soil, 58.2% of upland soil, 60.3% of orchard field soil, and 62.1% of greenhouse soil were in proper range. For the content of soil organic matter, 41.7% of paddy field soil, 46.5% of upland soil, 40.5% of orchard field soil, and 81.4% of greenhouse soil were higher than proper range. The content of available phosphorus was mostly higher than proper value on the different fields except upland soil. The contents of exchangeable $K^+$, $Ca^{2+}$, and $Mg^{2+}$ were also exceeded in the orchard field and greenhouse soils. In addition, microbial population, especially aerobic bacteria, in the EFAC was higher than that in regular farming land.

Correlation of Arsenic and Heavy Metals in Paddy Soils and Rice Crops around the Munmyung Au-Ag Mines (문명 금은광산 주변 논토양에서 As 및 중금속의 토양과 벼작물의 상관성 평가)

  • Kwon, Ji Cheol;Park, Hyun-Jung;Jung, Myung Chae
    • Economic and Environmental Geology
    • /
    • v.48 no.4
    • /
    • pp.337-349
    • /
    • 2015
  • This study has focused on investigation of correlation for As and heavy metals in paddy soil and rice crops sampled in the vicinity of the abandoned Munmyung Au-Ag mine. Soil samples extracted by various methods including aqua regia, 1 M $MgCl_2$, 0.01 M $CaCl_2$ and 0.05 M EDTA were analyzed for As and heavy metals (Cd, Cu, Pb and Zn). Rice grain samples grown on the soils were also analyzed for the same elements to evaluate the relationships between soils and rice crops. According to soil extraction methods, As and heavy metal contents in the soils were decreased in the order of aqua regia > 0.01 M $CaCl_2$ > 1 M $MgCl_2$ > 0.05 M EDTA. In addition to correlation analysis, statistically significant correlation with the four extraction methods (p<0.01) were found in the soil and rice samples. As calculation of biological accumulation coefficients (BACs) of the rice crops for As and heavy metals, the BACs for Cd, Zn and Cu were relatively higher than those for As and Pb. This study also carried out a stepwise multiple linear regression analysis to identify the dominant factors influencing metal extraction rates of the paddy soils. Furthermore, daily intakes of As and heavy metals from regularly consumed the rice grain (287 g/day) grown on the contaminated soils by the mining activities were estimated, and found that Cd and As intakes from the rice reached up to 73.7% and 51.8% for maximum allowance levels of trace elements suggested by WHO, respectively. Therefore, long-term consumption of the rice poses potential health problems to residents around the mine, although no adverse health effects have yet been observed.

Effect of Extraction Conditions on in vitro Antioxidant Activities of Root Bark Extract from Ulmus pumila L. (추출조건에 따른 유근피 추출물의 항산화 활성)

  • Kim, Jae-Min;Cho, Myoung-Lae;Seo, Kyu-Eun;Kim, Ye-Seul;Jung, Tae-Dong;Kim, Young-Hyun;Kim, Dan-Bi;Shin, Gi-Hae;Oh, Ji-Won;Lee, Jong Seok;Lee, Jin-Ha;Kim, Jong-Yae;Lee, Dae-Won;Lee, Ok-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.8
    • /
    • pp.1172-1179
    • /
    • 2015
  • This study investigated optimal extraction conditions for application of Ulmus pumila L. as a natural antioxidant. U. pumila L. was extracted using ethanol (EtOH) at various concentrations (0, 40, and 80%) and extraction times (1, 2, and 3 h) at $70^{\circ}C$ and then evaluated for extraction yield, total phenolic contents, total flavonoid contents, as well as antioxidant activities [2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity, reducing power, and oxygen radical absorbing capacity (ORAC)]. Antioxidant activities were correlated with total phenolic and flavonoid contents. Of the solvent conditions, 80% EtOH extracts for 3 h at $70^{\circ}C$ showed the highest total phenolic and flavonoid contents with strong antioxidant activities, although there were no significant time effects on DPPH and ABTS radical scavenging activities and reducing power. However, ORAC values of all EtOH extracts remarkably increased in a time-dependent manner. In addition, 80% EtOH extract for 3 h exhibited strong antioxidant effects on HDF and 3T3-L1 cells. Therefore, the antioxidant capacity of U. pumila L., may due to phenolic and flavonoid contents, and extraction conditions were 80% EtOH for 3 h at $70^{\circ}C$. This extract could be a good source for natural antioxidants.

A Study on the Estimation of Monthly Average River Basin Evaporation (월(月) 평균유역증발산량(平均流域蒸發散量) 추정(推定)에 관(關)한 연구(硏究))

  • Kim, Tai Cheol;Ahn, Byoung Gi
    • Korean Journal of Agricultural Science
    • /
    • v.8 no.2
    • /
    • pp.195-202
    • /
    • 1981
  • The return of water to the atmosphere from water, soil and vegetation surface is one of the most important aspects of hydrological cycle, and the seasonal trend of variation of river basin evaporation is also meaningful in the longterm runoff analysis for the irrigation and water resources planning. This paper has been prepared to show some imformation to estimate the monthly river basin evaporation from pan evaporation, potential evaporation, regional evaporation and temperature through the comparison with river basin evaporation derived from water budget method. The analysis has been carried out with the observation data of Yongdam station in the Geum river basin for five year. The results are summarized as follows and these would be applied to the estimation of river basin evaporation and longterm runoff in ungaged station. 1. The ratio of pan evaporation to river basin evaporation ($E_w/E_{pan}$) shows the most- significant relation at the viewpoint of seasonal trend of variation. River basin evaporation could be estimated from the pan evaporation through either Fig. 9 or Table-7. 2. Local coefficients of cloudness effect and wind function has been determined to apply the Penman's mass and energy transfer equation to the estimation of river basin evaporation. $R_c=R_a(0.13+0.52n/D)$ $E=0.35(e_s-e)(1.8+1.0U)$ 3. It seems that Regional evaporation concept $E_R=(1-a)R_C-E_p$ has kept functional errors due to the inapplicable assumptions. But it is desirable that this kind of function which contains the results of complex physical, chemical and biological processes of river basin evaporation should be developed. 4. Monthly river basin evaporation could be approximately estimated from the monthly average temperature through either the equation of $E_w=1.44{\times}1.08^T$ or Fig. 12 in the stations with poor climatological observation data.

  • PDF