• Title/Summary/Keyword: Biological Nutrient Removal

Search Result 171, Processing Time 0.023 seconds

Treatment Characteristics and Application of DAF Process for Effective Solid Separation in BNR Municipal Wastewater Treatment System (BNR 하수처리시스템에서 효과적 고형물 분리를 위한 DAF 공정의 적용과 처리특성)

  • Kwak, Dong-Heui;Rhu, Dae-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.3
    • /
    • pp.267-276
    • /
    • 2010
  • Many plants have been improved to adapt the target of the biological treatment processes changed from organics to nutrients since the water quality criteria of effluent was reinforced and included T-N and T-P for the municipal wastewater treatment plant. To meet the criteria of T-N and T-P, the conventional biological reactor such as aeration tank in activated sludge system is changed to the BNR (biological nutrient removal) processes, which are typically divided into three units as anaerobic, anoxic and oxic tank. Therefore, the solid separation process should be redesigned to fit the BNR processes in case of the application of the DAF (dissolved air flotation) process as an alternatives because the solid-liquid separation characteristics of microbial flocs produced in the BNR processes are also different from that of activated sludge system as well. The results of this study revealed that the microbial floc of the anaerobic tank was the hardest to be separated among the three steps of the unit tanks for the BNR processes. On the contrary, the oxic tank was best for the removal efficiency of nutrients as well as suspended solid. In addition, the removal efficiency of nutrients was much improved under the chemical coagulation treatment though coagulation was not indispensable with a respect to the solid separation. On the other hand, in spited that the separation time for the microbial floc from the BNR processes were similar to the typical particles like clay flocs, over $2.32{\times}10^3$ ppm of air volume concentration was required to keep back the break-up of the bubble-floc agglomerates.

Integrated System of RBC-lime Precipiatation for Simultaneous Removal of Organics and Nutrients (회전원판공정과 화학침전공정 조합을 이용한 유기물과 질소*인의 동시제거)

  • 박종안;허준무;손부순
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.1
    • /
    • pp.132-140
    • /
    • 1998
  • Laboratory-scale experiments were conducted using a three-stage rotating biological contactor unit followed by lime precipitation and sedimentation with effluent recycle to the first stage. The purpose of this study was to evaluate the effects of hydraulic loadings of 0.031-0.076 $m^3/m^2/d and recycle ratio of 1 to 3 on the simultaneous removal of organics and nutrients from domestic wastewater. Lime was added to maintain pH of 10.4-11.0 in the coagulation-flocculation reactor. Results showed that the highest nitrogen removal rate of 70.5% occurred at the lower hydraulic loading of 0.031 $m^3/m^2/d at a recirculation rate of 300%, and similarly, highest nitrification occurred at the same hydraulic loading and recycle ratio. Concentration of ammonia nitrogen in the effluent was less than 1 mg/l at the same operating conditions for higher nitrogen removal. Whereas, high BOD and COD removal was observed at hydraulic loading rate of 0.054 $m^3/m^2/d, and high removal of organic matter was evident from the consistent low COD and BOD value. Results obtained from the operating condition of higher loading rate, 300% of recycle rate showed the highest removals. Increasing in recycle rate and hydraulic loading rate increased the volatile solids fraction of the sludges generated to the extent of 47% at 0.076 $m^3/m^2/d hydraulic loading and 300% recirculation rate. Since pH in the flocculator was maintained at the pH of 10.4-11.0, above 90% removal of phosphorus was obtained. Average concentration of suspended solids was always maintained over 40 mg/l in the effluent. Therefore an RBC unit operating at a hydraulic loading near 0.031 $m^3/m^2/d with a recycle rate of 300% is a viable and feasible alternate conditions to produce an effluent with relative low organic matter and phosphorus, provided that there is a neutralization unit to control the pH and SS of the effluent.

  • PDF

Behavior of Nutrients and Heavy Metals (Cu, Zn) and Applicability Evaluation from Swine Wastewater Treatment Using Microalga Scenedesmus obliquus (미세조류 Scenedesmus obliquus 영양염류와 중금속(Cu, Zn) 거동특성 및 축산 폐수 처리 적용성 평가)

  • Park, Ji-Su;Hwang, In-Sung;Oh, Eun-Ji;Yoo, Jin;Chung, Keun-Yook
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.226-232
    • /
    • 2019
  • The biological wastewater treatment is more eco-friendly and can be used effectively in wastewater for a variety of purposes than that of the conventional treatment. In particular, the wastewater treatment using microalgae in biological treatment processes has attracted great attention due to its ability to remove economically nutrients from wastewater and have many advantages as a renewable energy source. This study was investigated to establish the optimal growth conditions for microalga Scenedesmus obliquus. Additionally, the removal efficiencies of nutrients (N, P) and heavy metals (Cu, Zn) from the synthetic wastewater were evaluated. As a results, the optimal growth conditions were established at $28^{\circ}C$, pH 7, and light and dark cycle of 14 : 10 h. In the evaluation of nutrient removal efficiencies at each concentrations of 500, 1,000, 5,000, and 10,000 mg/L, the removal rates were 17.6~70% N and 8.4~34% P in the single treatment and 12.0~58.0% N and 3.0~40.3% P in the binary mixture treatment. In addition, the evaluation of heavy metal removal efficiencies at each concentrations of 10, 30 and 50 mg/L, the removal rates were 13.7~40.3% Cu and 10.0~30.0% Zn in the single treatment and 16.0~40.0% Cu and 12.0~20.0% Zn in the binary mixture treatment. Based on the results of the study, it appears that Scenedesmus obliquus can be used for the removal of nutrients and heavy metals from the swine wastewater.

Potential Use of Microalgae Scenedesmus acuminatus for Tertiary Treatment of Animal Wastewater (축산폐수 고도처리를 위한 미세조류 Scenedesmus acuminatus의 이용 가능성)

  • Park, Ki-Young;Lim, Byung-Ran;Lee, Ki-Say;Lee, Soo-Koo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.1
    • /
    • pp.63-69
    • /
    • 2011
  • The green algae Scenedesmus acuminatus was cultured in different media: animal wastewater and an artificial culture medium in order to evaluate potential use for tertiary treatment. The experiments were conducted with air flowrate 1~2 L/min at $28{\sim}30^{\circ}C$. The nitrogen and phosphorus showed very similar removal efficiencies (68~77 % and 69~80 % for nitrogen and phosphorus respectively). The optimal fed period was estimated as three days in the semi-continuous experiment. The effects of $CO_2$ (4.5 %) injection on nutrient uptake from animal wastewater (biological treatment effluent) were compared to an air injection under the same conditions of light and photoperiod. The uptake rates of nutrient with air injection were observed 0.009 gN/gChl-a/day, 0.028 gN/gChl-a/day and T-P 0.003 gP/gChl-a/day for nitrate, total nitrogen and phosphorus respectively. The rates were enhanced by addition of $CO_2$ to 0.026 gN/gChl-a/day, 0.076 gN/gChl-a/day and T-P 0.018 gP/gChl-a/day. This study establishes that $CO_2$ addition during nutrient deprivation of microalgal cells may accelerate tertiary wastewater treatment.

Comparison of Anaerobic and Aerobic Sequencing Batch Reactor System for Liquid Manure Treatment (액상가축분뇨처리에서 혐기성 및 호기성 연속 회분식 반응조 시스템의 비교 연구)

  • Hong, Ji-Hyung
    • Journal of Animal Environmental Science
    • /
    • v.14 no.2
    • /
    • pp.113-118
    • /
    • 2008
  • Sequencing batch operation consists of fill, react, settle and decant phases in the same reactor. Operation consists of anaerobic, anoxic and oxic (aerobic) phases when nutrient removal from the wastewater is desired. Since the same reactor is used for biological oxidation (or mixing) and sedimentation in aerobic and anaerobic SBR operations, capital and operating costs are lower than conventional activated sludge process and conventional anaerobic digestion process, respectively. Therefore, Aerobic SBR and Anaerobic SBR operations may be more advantageous far treatment of small volume animal wastewater in rural areas.

  • PDF

Isolation and Culture of Methanotrophs in Inorganic Medium and Characterization of COD Production, Nutrient Removal (무기배지에서 메탄산화균의 분리배양과 COD 생성 및 탈질.탈인 특성 연구)

  • Kim, I-Tae;Bae, Woo-Keun;Kim, Kwang-Soo;Lee, Hee-Ja
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1198-1204
    • /
    • 2005
  • The objectives of this study were to isolate and culture methanotrophs and to apply them for biological removal of nitrogen and phosphorous. Methanotrophs (dominant species: Methylomonas methanica) were isolated from a landfill cover soil, cultured in a NMS medium, and analyzed to reveal their characteristics of growth and nutrient removal. The methanotrophs themselves can produce substantial amount of organic substances(as COD) including methanol, formaldehyde, and formate, as carbon sources required for denitrification. For instance, the production rate for methanol was $8\;mg/L{\cdot}hr$. Moreover, the analysis of nitrogen and phosphorous in the sludge suggested that the methanotrophs assimilate nitrogen and phosphorous as growth substances.

The Characteristics with HRT Variation on InSub Pilot Plant for Advanced Sewage Treatment

  • Kang, Jin-Young;Huh, Mock
    • Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.174-179
    • /
    • 2009
  • The InSub system(applied for a patent) was developed, as it combined the indirectly aerated submerged biofiltration(InSub) reactor and Anaerobic/ Anoxic reactor. This system which can eliminate organism and nutrient materials at the same time, which is safe and economical to be maintained and managed is more simple process than the complicated existing biological advanced sewage treatment system. The most suitable HRT of this study showed 9 hours. As looking into the effluent concentration and removal efficiency of each item at 9 hours of HRT, each effluent concentration for $SS,\;BOD5,\;COD_{Mn},\;and\;COD_{Cr}$ was 1.46 mg/L, 7,09 mg/L, 9.84 mg/L and 16.42 mg/L. And their removal efficiency was 96.98%. 90.59%, 77.18% and 83.92%, respectively. Each effluent concentration of T-N and T-P was 10.42 mg/L and 1.04 mg/L. Their removal efficiency was 73.38% and 61.62%, respectively. This pilot plant experiment(the state was without the internal recycling.) followed a variety of HRT. The results confirmed that it was to be advanced sewage treatment system with high efficiency when it combined with the internal recycling.

The study for Biological nutrient removal of High-strength nitrogen loading rate using B3 pilot plant (B3 Pliot plant를 이용한 고농도 질소부하에서의 고도처리에 관한 연구)

  • Eorn Tae-Kyu;Han Dong-Yueb;Kim Boo-Gil
    • Journal of Environmental Science International
    • /
    • v.14 no.8
    • /
    • pp.771-775
    • /
    • 2005
  • The purpose of this research was to investigate applicative possibility of field. Pilot-scale experiments were conducted, at outdoor temperature, HRT l0hour, IR(Internal Recycle) $150\%$ and used $2.8m^3$ Reactor. External carbon source was varied 80 to 120 mg/L. When External carbon source and Alkalinity were injected to the B3 pilot plant, the removal efficiencies of COD and BOD were not decreased. Nitrification rate were 5.95, 5.40, 4.08 $mgNH_4^+-N/gSS/d$ during operation periods and denitrification rate was $3.l2mgNO_3^--N/gSS/d.$ When we surveyed the relationship between loading rate of nitrogen and nitrogen removal quantity, this data was 0.949, B3 process will be possible application process of field.

Industrial-scale biological treatment of Chinese nutgall processing wastewater by combined expanded granular sludge bed and bio-contact oxidation

  • Wu, Yundong;Zhou, Kanggen;Dong, Shuyu;Yu, Wei;Liang, Chunsheng
    • Environmental Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.336-341
    • /
    • 2015
  • The industrial-scale biological treatment of Chinese nutgall processing wastewater was conducted with a $200m^3$ expanded granular sludge bed reactor and a $900m^3$ bio-contact oxidation reactor. The temperature of the two reactors was controlled under mesophilic conditions ($32-40^{\circ}C$), through changing the proportion of the dilution water, which was composed of steam condensation water and residual circulating water. The effluent COD, gallic acid, chroma, total nitrogen, total phosphorus levels and pH of both the expanded granular sludge bed and bio-contact oxidation reactors were monitored. In addition, the redox potential in the expanded granular sludge bed was recorded. The total COD removal efficiency was 87.257% when the influent COD concentration was $14\;251{\pm}3\;148mg/L$, and the ratio of wastewater: dilution water was 1:5. The removal efficiencies of gallic acid, chroma, total nitrogen, and total phosphorus were 72.221%, 43.940%, 64.151% and 39.316%, respectively. The effluent pH increased in either the expanded granular sludge bed reactor or the bio-contact oxidation reactor during the operation. The redox potential in the expanded granular sludge bed varied between -367 mV and -435 mV. The results indicate that the combined process was suitable for treating Chinese nutgall processing wastewater.

Efficacy of Three Different Plant Species for Arsenic Phytoextraction from Hydroponic System

  • Tiwari, Sarita;Sarangi, Bijaya Ketan;Pandey, Ram Avatar
    • Environmental Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.145-149
    • /
    • 2014
  • Arsenic (As) is one of the heavy metals which causes acute bio-toxicity even at low concentration and has disastrous effect on environment. In some countries, As contamination has become alarming and increasing day by day as consequences of unsustainable management practices. Many existing physical, chemical and biological processes for As removal from water system are not feasible due to techno-economic limitations. The present study highlights the scope of biological strategy for As removal through phytoextraction. Arsenic uptake and accumulation in the biomass of three plant species and their As tolerance abilities have been investigated to develop an efficient phytoextraction system in combination of these plant species. Three non-crop plant species, Pteris vittata; Mimosa pudica, and Eichhornia crassipus were treated with 0-200 mg/L As in liquid nutrient solution for 14 days. P. vittata accumulated total 9,082.2 mg (8,223 mg in fronds) As/kg biomass and Eichhornia total 6,969 mg (4,517 mg in fronds)/kg biomass at 200 mg/L As concentration, respectively. Bioaccumulation factor (BF) and translocation factor (TF) were estimated to differentiate between excluders, accumulators and accumulation in above ground biomass. Pteris and Eichhornia have highest BF (67 and 17) and TF (64 and 3), respectively. In contrast, Mimosa accumulated up to 174 mg As/kg plant biomass which is low in comparison with other two plants, and both BF and TF were ${\leq}1$. This study reveals that Pteris and Eichhornia are As hyperaccumulator, and potential candidates for As removal from water system.