Browse > Article
http://dx.doi.org/10.14478/ace.2019.1003

Behavior of Nutrients and Heavy Metals (Cu, Zn) and Applicability Evaluation from Swine Wastewater Treatment Using Microalga Scenedesmus obliquus  

Park, Ji-Su (Department of Environmental & Biological Chemistry, College of Agriculture, Life and Environment Sciences, Chungbuk National University)
Hwang, In-Sung (Animal Products Inspection Division, Chungbuk Livestock and Veterinary Service)
Oh, Eun-Ji (Department of Environmental & Biological Chemistry, College of Agriculture, Life and Environment Sciences, Chungbuk National University)
Yoo, Jin (Department of Environmental & Biological Chemistry, College of Agriculture, Life and Environment Sciences, Chungbuk National University)
Chung, Keun-Yook (Department of Environmental & Biological Chemistry, College of Agriculture, Life and Environment Sciences, Chungbuk National University)
Publication Information
Applied Chemistry for Engineering / v.30, no.2, 2019 , pp. 226-232 More about this Journal
Abstract
The biological wastewater treatment is more eco-friendly and can be used effectively in wastewater for a variety of purposes than that of the conventional treatment. In particular, the wastewater treatment using microalgae in biological treatment processes has attracted great attention due to its ability to remove economically nutrients from wastewater and have many advantages as a renewable energy source. This study was investigated to establish the optimal growth conditions for microalga Scenedesmus obliquus. Additionally, the removal efficiencies of nutrients (N, P) and heavy metals (Cu, Zn) from the synthetic wastewater were evaluated. As a results, the optimal growth conditions were established at $28^{\circ}C$, pH 7, and light and dark cycle of 14 : 10 h. In the evaluation of nutrient removal efficiencies at each concentrations of 500, 1,000, 5,000, and 10,000 mg/L, the removal rates were 17.6~70% N and 8.4~34% P in the single treatment and 12.0~58.0% N and 3.0~40.3% P in the binary mixture treatment. In addition, the evaluation of heavy metal removal efficiencies at each concentrations of 10, 30 and 50 mg/L, the removal rates were 13.7~40.3% Cu and 10.0~30.0% Zn in the single treatment and 16.0~40.0% Cu and 12.0~20.0% Zn in the binary mixture treatment. Based on the results of the study, it appears that Scenedesmus obliquus can be used for the removal of nutrients and heavy metals from the swine wastewater.
Keywords
Microalgae; Phytoremediation; Nutrient; Heavy metal; Swine wastewater;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 H. Doshi, A. Ray, and I. L. Kothari, Biosorption of cadmium by live and dead Spirulina: IR spectroscopic, kinetics, and SEM studies, Curr. Microbiol., 54(3), 213-218 (2007).   DOI
2 D. Obaja, S. Mace, J. Costa, C. Sans, and J. Mata alvarez, Nitrification, denitrification and biological phosphorus removal in piggery wastewater using a sequencing batch reactor, Bioresour. Technol., 87(1), 103-111 (2003).   DOI
3 C. Vohla, M. Koiv, H. J. Bavor, F. Chazarenc, and U. Mander, Filter materials for phosphorus removal from wastewater in treatment wetlands - A review, J. Ecol. Eng., 37(1), 70-89 (2011).   DOI
4 J. Ruiz, Z. Arbib, P. D. Alvarez-Diaz, C. Garrido-Perez, J. Barragan, and J. A. Perales, Influence of light presence and biomass concentration on nutrient kinetic removal from urban wastewater by Scenedesmus obliquus, J. Biotechnol., 178, 32-37 (2014).   DOI
5 A. Richmond and J. U. Grobbelaar, Factors affecting the output rate of Spirulina platensis with reference to mass cultivation, Biomass, 10(4), 253-264 (1986).   DOI
6 P. S. Lau, N. F. Y. Tam, and Y. S. Wong, Effect of algal density on nutrient removal from primary settled wastewater, J. Environ. Pollut., 89(1), 59-66 (1995).   DOI
7 Q. X. Kong, L. Li, B. Martinez, P. Chen, and R. Ruan, Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production, Appl. Biochem. Biotechnol., 160(1), 9-18 (2010).   DOI
8 H. N. Seo, M. H. Lee, and S. K. Wang, Development of a mathematical model for simulating removal mechanisms of heavy metals using biocarrier beads, J. Soil Groundw. Environ., 18(4), 8-18 (2013).   DOI
9 A. C. Guedes, H. M. Amaro, R. D. Pereira, and F. X. Malcata, Effects of temperature and pH on growth and antioxidant content of the microalga Scenedesmus obliquus, Biotechnol. Prog., 27(5), 1218-1224 (2011).   DOI
10 G. Hodaifa, M. E. Martinez, and S. Sanchez, Influence of temperature on growth of Scenedesmus obliquus in diluted olive mill wastewater as culture medium, Eng. Life Sci., 10(3), 257-264 (2010).   DOI
11 E. J. Oh, I. S. Hwang, J. Yoo, and K. Y. Chung, Removal of Nutrients and Heavy Metals from the Swine Wastewater by Chlorella vulgaris, J. Environ. Sci. Int., 27(11), 1059-1072 (2018).   DOI
12 A. Mangaiyarkarasi, D. Geetha ramani, and M. Naveena, Optimization of fertilizer based media for the cultivation of scendesmus species, Int. J. Pharma Bio Sci., 8(3), 615-621 (2017).
13 Y. Li, M. Horsman, B. Wang, N. Wu, and C. Q. Lan, Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans, Appl. Microbiol. Biotechnol., 81(4), 629-636 (2008).   DOI
14 T. Kallqvist and A. Svenson, Assessment of ammonia toxicity in tests with the microalga, Nephroselmis pyriformis, Chlorophyta, Water Res., 37(3), 477-484 (2003).   DOI
15 M. A. Borowitzka, Limits to growth. In: Y. S. Wong and N. F. Y. Tam (eds). Wastewater Treatment with Algae, 203-226. Springer. Berlin, Heidelberg, Germany (1998).
16 C. J. Park, J. E. Yang, K. R. Ryu, Y. S. Zhang, and W. I. Kim, Development of adsorbent for heavy metals by activation of the bark, Korean J. Environ. Agric., 23(4), 240-244 (2004).   DOI
17 M. Zabochnicka-Swiatek and M. Krzywonos, Potentials of biosorption and bioaccumulation processes for heavy metal removal, Pol. J. Environ. Stud., 23(2), 551-561 (2014).
18 M. K. Park, S. J. Lee, H. H. Seo, H. S. Kim, Y. H. Kim, B. D. Yoon, and H. M. Oh, Advanced treatment of swine wastewater by a green alga, Scenedesmus quadricauda, Algae, 13(2), 227-233 (1998).
19 D. Bulgariu and L. Bulgariu, Equilibrium and kinetics studies of heavy metal ions biosorption on green algae waste biomass, Bioresour. Technol., 103(1), 489-493 (2012).   DOI
20 I. B. Kim, J. H. Suh, and H. S. Lee, Biosorption process for removing heavy metals in aqueous solution(II), J. Korean Soc. Environ. Adm., 7(1), 77-85 (2001).
21 D. G. Kim, H. J. La, C. Y. Ahn, Y. H. Park, and H. M. Oh, Harvest of Scenedesmus sp. with bioflocculant and reuse of culture medium for subsequent high-density cultures, Bioresour. Technol., 102(3), 3163-3168 (2011).   DOI
22 S. Sanchez, M. Martinez, M. T. Espejo, R. Pacheco, F. Espinola, and G. Hodaifa, Mixotrophic culture of Chlorella pyrenoidosa with olive-mill wastewater as the nutrient medium, J. Appl. Phycol., 13(5), 443-449 (2001).   DOI
23 J. Shi, B. Podola, and M. Melkonian, Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: An experimental study, J. Appl. Phycol., 19(5), 417-423 (2007).   DOI
24 K. Y. Park, Potential use of microalgae Scenedesmus acuminatus for tertiary treatment of animal wastewater, J. Korean Soc. Agric. Eng., 53(1), 63-69 (2011).   DOI
25 M. K. Kim, J. W. Park, C. S. Park, S. J. Kim, K. H. Jeune, M. U. Chang, and J. Acreman, Enhanced production of Scenedesmus spp.(green microalgae) using a new medium containing fermented swine wastewater, Bioresour. Technol., 98(11), 2220-2228 (2007).   DOI
26 M. M. Sancho, J. J. Castillo, and F. El Yousfi, Photoautotrophic consumption of phosphorus by Scenedesmus obliquus in a continuous culture. Influence of light intensity, Process Biochem., 34(8), 811-818 (1999).   DOI
27 H. J. Choi and S. M. Lee, Effect of temperature, light intensity and pH on the growth rate of chlorella vulgaris, J. Korean Soc. Environ. Eng., 33(7), 511-515 (2011).   DOI
28 K. O. Cassidy, Evaluating Algal Growth at Different Temperatures, MS Thesis, University of Kentucky, Lexington, U.S.A. (2011).
29 R. Bouterfas, M. Belkoura, and A. Dauta, The effects of irradiance and photoperiod on the growth rate of three freshwater green algae isolated from a eutrophic lake, Limnetica, 25(3), 647-656 (2006).
30 M. Al-Qasmi, N. Raut, S. Talebi, S. Al-Rajhi, and T. Al-Barwani, A review of effect of light on microalgae growth, Proceedings of the World Congress on Engineering, July, 4-6, WCE, London, U.K., 1, 4-6 (2012).
31 Y. Xu, I. M. Ibrahim, and P. J. Harvey, The influence of photoperiod and light intensity on the growth and photosynthesis of Dunaliella salina (chlorophyta) CCAP 19/30, Plant Physiol. Biochem., 106, 305-315 (2016).   DOI
32 E. S. Mostert and J. U. Grobbelaar, The influence of nitrogen and phosphorus on algal growth and quality in outdoor mass algal cultures, Biomass, 13(4), 219-233 (1987).   DOI