• Title/Summary/Keyword: Biological Motion

Search Result 275, Processing Time 0.034 seconds

Intelligent Motion Planner for Redundant Manipulators Controlled by Neuro-Biological Signals

  • Kim, Chang-Hyun;Kim, Min-Soeng;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.845-848
    • /
    • 2003
  • There are many researches on using human neuro-biological signals for various problems such as controlling a mechanical object and/or interfacing human with the computer. It is one of very interesting topics that human can use various instruments without learning specific knowledge if the instruments can be controlled as human intends. In this paper, we proposed an intelligent motion planner for a redundant manipulator, which is controlled by humans neuro-biological signals, especially, EOG (Electrooculogram). We found the optimal motion planner for the redundant manipulator that can move to the desired point. We used neural networks to find the inverse kinematics solution of the manipulator. We also showed the performance of the proposed motion planner with several simulations.

  • PDF

The MPI CyberMotion Simulator: A Novel Research Platform to Investigate Human Control Behavior

  • Nieuwenhuizen, Frank M.;Bulthoff, Heinrich H.
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.2
    • /
    • pp.122-131
    • /
    • 2013
  • The MPI CyberMotion Simulator provides a unique motion platform, as it features an anthropomorphic robot with a large workspace, combined with an actuated cabin and a linear track for lateral movement. This paper introduces the simulator as a tool for studying human perception, and compares its characteristics to conventional Stewart platforms. Furthermore, an experimental evaluation is presented in which multimodal human control behavior is studied by identifying the visual and vestibular responses of participants in a roll-lateral helicopter hover task. The results show that the simulator motion allows participants to increase tracking performance by changing their control strategy, shifting from reliance on visual error perception to reliance on simulator motion cues. The MPI CyberMotion Simulator has proven to be a state-of-the-art motion simulator for psychophysical research to study humans with various experimental paradigms, ranging from passive perception experiments to active control tasks, such as driving a car or flying a helicopter.

Analog MOS circuits for motion detection based on correlation neural networks (상호연관 신경망에 기반을 둔 이동 검출을 위한 아날로그 집적회로)

  • ;;;Masahiro Ohtani;Hiroo Yonezu
    • Proceedings of the IEEK Conference
    • /
    • 2000.11c
    • /
    • pp.149-152
    • /
    • 2000
  • We propose simple analog MOS circuits producing the one-dimensional compact motion-sensing circuits. In the proposed circuit, the optical flow is computed by a number of local motion sensors which are based on biological motion detectors. Mimicking the structure of biological motion detectors made the circuit structure quite simple, compared with conventional velocity sensing circuits. Extensive simulation results by a simulation program of integrated circuit emphasis (SPICE) indicated that the proposed circuits could compute local velocities of a moving light spot and showed direction selectivity for the moving spot

  • PDF

Bio Nature Mimic - Simultaneous Measurements of a Seagull Model's Motion and its Flow Fields (생체자연모사 - 갈매기 운동과 유동 동시측정 해석)

  • Doh, Deog-Hee;Baek, Tae-Sil;Cho, Kyeong-Rae;Pyeon, Yong-Beom;Cho, Yong-Beom
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.117-120
    • /
    • 2006
  • Inspiring or mimicking biological bodies is regarded as one of a breakthrough in the conventional engineering. The bird's motion is one of the mimicking objects. Seagulls fly under strong storm at sea. An attempt of investigating into the characteristics of a seagull model's motion and its flow fields has been made in this study. Three cameras, two for motion capture and one for flow field, were used. The motions of the seagull's wing have been reconstructed, and the flow characteristics around the wing have been investigated with 2D-PIV measurements.

  • PDF

A Measurement System for Rounded Shoulder Posture using a Wearable Stretch Sensor

  • Nguyen, Manh Thang;Dang, Quoc Khanh;Kim, Younghoon;Chee, Youngjoon
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.10-15
    • /
    • 2018
  • In this paper, we present a wearable measurement system for monitoring rounded shoulders. The system contains a shoulder correction band and a stretch sensor that can correct and measure shoulder posture, respectively. The capacitance of the stretch sensor changes linearly according to changes in the shoulders. To verify measurement, a motion analysis system was used as the reference to compare the change in the rounded angles of the shoulders and the change in the stretch sensor's capacitance. The results indicated that there is a high correlation between the two changes and the system can be used as a monitoring device for rounded shoulders.

A study on the straight cruise of fish robot according to biological mimic (생물학적 모방에 따른 물고기 로봇의 직진유영 연구)

  • Park, Jin-Hyun;Lee, Tae-Hwan;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.8
    • /
    • pp.1756-1763
    • /
    • 2011
  • This paper was researched the straight cruise of fish robot according to biological mimic, and it was compared the proposed method which was considered up to 7th order components in fourier series of Liu's tail motion function with the approximate method which was used general sine function by simulation. If fish robot has a large number of links and if the length of tail link is long. The end rotary joint trajectory of tail motion function generally is different from sine function. Therefore The approximate method which expresses tail motion trajectories as fundamental component in fourier series has a problem. Through the computer simulation, the proposed method showed 10% excellent propulsion and velocity than the conventional method.

Effect of Color and Emotional Context on Processing Emotional Information of Biological Motion (색과 정서적 맥락이 생물형운동의 정서정보처리에 미치는 영향)

  • Kim, Jejoong;Kim, Yuri;Jo, Eunui
    • Science of Emotion and Sensibility
    • /
    • v.23 no.3
    • /
    • pp.63-78
    • /
    • 2020
  • It is crucial to process not only social cognitive information but also various emotional information for appropriate social interaction in everyday life. The processing of emotions embedded in social stimuli is affected by various context and external factors and the features of their own. Emotion discrimination tasks using point-light biological motion were conducted in this study to understand the factors influencing emotion processing and their effects. A target biological motion with angry or happy emotion was presented in the first task in red, green, white, or yellow color. A white angry, happy, or neutral "cue" biological motion was displayed simultaneously. Participants judged the emotion of the target relative to the cue stimulus by comparing the target with the cue. The second task used only emotionally neutral stimuli to find effect by the color itself. The results indicated an association between the specific color of the target and emotion. Red facilitated processing anger, whereas green appeared to facilitate happy emotion. The discrimination accuracy was high when the emotions of the cue and the target were identical in general, but the combination of red color and anger yielded different results compared with the rest of the conditions. Some illusory emotional responses associated with the target colors were observed in the second task. We could observe the effects of external factors in this study, affecting the emotional processing using biological motion rather than conventional face stimuli. Possible follow-up studies and clinical research were discussed.

Common-path Optical Interferometry for Stabilized Dynamic Contrast Imaging: A Feasibility Study

  • Seung-Jin, Lee;Young-Wan, Choi;Woo June, Choi
    • Current Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.65-72
    • /
    • 2023
  • The motion of organelles inside a cell is an important intrinsic indicator for assessing cell physiology and tissue viability. Dynamic contrast full-field optical coherence tomography (D-FFOCT) is a promising imaging technology that can visualize intracellular movements using the variance of temporal interference signals caused by biological motions. However, double-path interferometry in D-FFOCT can be highly vulnerable to surrounding noise, which may cause turbulence in the interference signals, contaminating the sample dynamics. Therefore, we propose a method for stabilized D-FFOCT imaging in noisy environments by using common-path interferometry in D-FFOCT. A comparative study shows that D-FFOCT with the proposed method achieves stable dynamic contrast imaging of a scattering phantom in motion that is over tenfold more noise-insensitive compared to the conventional one, and thus this imaging capability can provide cleaner motion contrast images. With the proposed approach, the intracellular dynamics of biological samples are imaged and monitored.

A Study on Measurement of Capacitive Electrode Motion Artifact (용량성 전극의 동잡음 측정 장치 연구)

  • Lim, Yong Gyu
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.3
    • /
    • pp.137-141
    • /
    • 2017
  • The indirect-contact bio-electric measurements using capacitive electrodes show large motion artifacts in comparison with conventional direct-contact measurements. It is necessary to measure the motion artifacts quantitatively, for the researches of reducing the motion artifacts. In this study, a device for quantitative measurement of motion artifacts was built. Using the device, an electrode was rubbed against some cloth(cotton) and the voltage variation of the electrode was measured as motion artifact in several environmental conditions(temperature and relative humidity). The measured waveforms agreed with that expected by the triboelectricity and the prior observations of the motion artifacts. Therefore, the results demonstrated the usability of the measurement system built in this study. The measurement system will be a great contribution to future research for reducing motion artifact.

FLOCKING AND PATTERN MOTION IN A MODIFIED CUCKER-SMALE MODEL

  • Li, Xiang;Liu, Yicheng;Wu, Jun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1327-1339
    • /
    • 2016
  • Self-organizing systems arise very naturally in artificial intelligence, and in physical, biological and social sciences. In this paper, we modify the classic Cucker-Smale model at both microscopic and macroscopic levels by taking the target motion pattern driving forces into consideration. Such target motion pattern driving force functions are properly defined for the line-shaped motion pattern and the ball-shaped motion pattern. For the modified Cucker-Smale model with the prescribed line-shaped motion pattern, we have analytically shown that there is a flocking pattern with an asymptotic flocking velocity. This is illustrated by numerical simulations using both symmetric and non-symmetric pairwise influence functions. For the modified Cucker-Smale model with the prescribed ball-shaped motion pattern, our simulations suggest that the solution also converges to the prescribed motion pattern.