• Title/Summary/Keyword: Biological Hydrogen Production

검색결과 151건 처리시간 0.028초

Improving 3'-Hydroxygenistein Production in Recombinant Pichia pastoris Using Periodic Hydrogen Peroxide-Shocking Strategy

  • Wang, Tzi-Yuan;Tsai, Yi-Hsuan;Yu, I-Zen;Chang, Te-Sheng
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권3호
    • /
    • pp.498-502
    • /
    • 2016
  • 3'-Hydroxygenistein can be obtained from the biotransformation of genistein by the engineered Pichia pastoris X-33 strain, which harbors a fusion gene composed of CYP57B3 from Aspergillus oryzae and a cytochrome P450 oxidoreductase gene (sCPR) from Saccharomyces cerevisiae. P. pastoris X-33 mutants with higher 3'-hydroxygenistein production were selected using a periodic hydrogen peroxide-shocking strategy. One mutant (P2-D14-5) produced 23.0 mg/l of 3'-hydroxygenistein, representing 1.87-fold more than that produced by the recombinant X-33. When using a 5 L fermenter, the P2-D14-5 mutant produced 20.3 mg/l of 3'-hydroxygenistein, indicating a high potential for industrial-scale 3'-hydroxygenistein production.

수소생산을 위한 Rhodopseudomonas sphaeroides의 최적 배양조건 (Optimum Culture Conditions for Hydrogen Production of Rhodopseudomonas sphaeroides)

  • 김진상;홍용기;신일식;조학래;장동석
    • 한국미생물·생명공학회지
    • /
    • 제19권2호
    • /
    • pp.179-185
    • /
    • 1991
  • We examined optimum culture conditions of Rhodopseudomonas sphaeroides B5 for effective utilization of substrate and sunlight for hydrogen production. The optimum concentration range of DL-lactate as electron donor for hydrogen production by resting cells was from 5 to 50mM, and optimun CN ratio (lactate/glutamat) for maintenence of hydrogen production activity by growing cultures was from 5 to 6. Hydrogen production by the cultures of low cell density (0.36mg/ml dry cells) was saturated with 10 Klux light intensity. Under constant illumination of 50Klux which was set up as the average medium value of annual variation of sunlight intensity, hydrogen production with various cell densities in the culture resulted in highest production rate (132${\mu}$l/hr/mg dry cells) up to 0.64mg/ml dry cells. However, the amount of total hydrogen production was saturated with cell density of 2.1mg/ml dry cells. In addition to these, the optimum inner thickness pervious to light of the culture vessel for hydrogen production which was measured under sunlight was 5 cm.

  • PDF

Enterobacter aerogenes의 혐기발효에 의한 바이오 수소 생산 배지의 최적화 (The Optimization of Biohydrogen Production Medium by Dark Fermentation with Enterobacter aerogenes)

  • 김규호;최영진;김의용
    • KSBB Journal
    • /
    • 제23권1호
    • /
    • pp.54-58
    • /
    • 2008
  • 수소는 연료전지와 같은 친환경적인 용도로 인해 미래의 에너지로서 주목받고 있는데, 생물학적인 발효법은 수소의 생산을 위한 유망한 방법이다. 본 연구에서는 Enterobacter aerogenes KCCM 40146을 대상으로 수소 생산을 최대로 하기 위한 배지의 조건을 최적화하였다. 그 결과, 0.5M potassium phosphate buffer pH 6.5에서 glucose 30 g/L일 때 수소의 누적 농도가 431 $m{\ell}$로 최대값을 얻을 수 있었다. 질소원으로 peptone과 tryptone을 넣은 배지가 수소의 생산 뿐 아니라 균주의 성장에 가장 효율적이었다 한편, 미생물의 성장속도조절이 수소의 효율적 생산을 위해 중요한 실험변수임을 알 수 있었다.

단세포성 해양남세균 종주를 이용한 광생물학적 수소생산 기술 (Current Status of Photobiological Hydrogen Production Technology Using Unicellular Marine Cyanobacterial Strains)

  • 박종우;김재만;이원호
    • 한국해양학회지:바다
    • /
    • 제14권1호
    • /
    • pp.63-68
    • /
    • 2009
  • 광생물학적 수소생산 잠재력을 가진 다양한 미소생물 가운데, 남세균은 21세기의 수소경제 시대에 적합한 생물군으로 오랫동안 알려져 왔다. 광생물학적으로 수소에너지를 생산하게 될 경우, 해양 단세포성 질소고정 남세균은 남세균류의 하부 분류군들 가운데 가장이상적인 종류의 하나로 평가되고 있다. 단세포성 질소고정 남세균을 이용한 수소생산 기술을 개발하기 위해 반드시 고려해야 할 3가지 사항은 1) 자연계에 존재하는 최우수 수소생산 종주의 확립 2) 광생물학적 수소생산을 뒷받침하는 종주-특이적 최적조건의 탐색 3) 유전학적 방법을 이용한 수소생산 종주의 개량 등이다. 본고에서는 광생물학적 수소생산기술의 상업화를 향한 최근의 연구 개발 추세를 돌아보고, 해양 단세포성 남세균 종주를 이용한 광생물학적 수소생산 기술 분야에서 한국의 세계선도적 지위 확보를 위해서는 향후 10-15년간 집중적인 연구 개발이 절실함을 제안하고자 한다.

Rhodopseudomonas sphaeroides와 Clostridium butyricum의 혼합배양을 통한 수소생성의 연속발효계 (Hydrogen Evolution through Mixed Continuous Culture of Rhodopseudomonas sphaeroides and Clostridium butyricum)

  • 고영현;배무
    • 한국미생물·생명공학회지
    • /
    • 제27권1호
    • /
    • pp.46-53
    • /
    • 1999
  • The purpose of this study was to optimize the conditions of continuous mixed culture of C.butyricum and R. spaeroides K-7, which were able to produce hydrogen using biomass-dreived substrate. To investigate the possibility of continuous culture, semi-continuous culture was carried out for 20 days. In semi-continuous culture using the reactor system, the replacement rate of fresh medium was 30% of total medium volume for the highest hydrogen evolution. In continuous culture, the optimum dilution rate was determined to be 0.05$h^{-1}$. The continuous culture produced 3.1 times as compared with the hydrogen on batch culture. On the other hand, the continuous mixed culture produced 1.3~2.1 times as much as hydrogen of the continuous monoculture of C. butyricum. When 10g of glucose in the media (1l) was supplied as a carbon source on continuous culture, mixed culture of C. butyricum and R. sphaeroides K-7 increased hydrogen evolution rate. Because considerable amount of glutamate was contained in waste water of glutamate fermentation, utilization of glutamate was examined in mixed culture. As a result of examination, production of hydorgen was slightly inhibited by high concentration of glutamate, more than 20mM, on continuous monoculture of R. sphaeroides K-7. On the other hand, both on continuous monoculture of C. butyricum and on mixed culture of C. butyricum and R. sphaeroides K-7, production of hydrogen was not inhibited by high concentration of glutamate such as 100mM. Hence this suggests that high concentration of waste water can be used as good substrate for hydrogen production on monoculture of C. butyricum and mixed culture of C. butyricum and R. sphaeroides K-7.

  • PDF

Unraveling Biohydrogen Production and Sugar Utilization Systems in the Electricigen Shewanella marisflavi BBL25

  • Sang Hyun Kim;Hyun Joong Kim;Su Hyun Kim;Hee Ju Jung;Byungchan Kim;Do-Hyun Cho;Jong-Min Jeon;Jeong-Jun Yoon;Sang-Hyoun Kim;Jeong-Hoon Park;Shashi Kant Bhatia;Yung-Hun Yang
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권5호
    • /
    • pp.687-697
    • /
    • 2023
  • Identification of novel, electricity-producing bacteria has garnered remarkable interest because of the various applications of electricigens in microbial fuel cell and bioelectrochemical systems. Shewanella marisflavi BBL25, an electricity-generating microorganism, uses various carbon sources and shows broader sugar utilization than the better-known S. oneidensis MR-1. To determine the sugar-utilizing genes and electricity production and transfer system in S. marisflavi BBL25, we performed an in-depth analysis using whole-genome sequencing. We identified various genes associated with carbon source utilization and the electron transfer system, similar to those of S. oneidensis MR-1. In addition, we identified genes related to hydrogen production systems in S. marisflavi BBL25, which were different from those in S. oneidensis MR-1. When we cultured S. marisflavi BBL25 under anaerobic conditions, the strain produced 427.58 ± 5.85 µl of biohydrogen from pyruvate and 877.43 ± 28.53 µl from xylose. As S. oneidensis MR-1 could not utilize glucose well, we introduced the glk gene from S. marisflavi BBL25 into S. oneidensis MR-1, resulting in a 117.35% increase in growth and a 17.64% increase in glucose consumption. The results of S. marisflavi BBL25 genome sequencing aided in the understanding of sugar utilization, electron transfer systems, and hydrogen production systems in other Shewanella species.

Control of Rumen Microbial Fermentation for Mitigating Methane Emissions from the Rumen

  • Mitsumori, Makoto;Sun, Weibin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권1호
    • /
    • pp.144-154
    • /
    • 2008
  • The rumen microbial ecosystem produces methane as a result of anaerobic fermentation. Methanogenesis in the rumen is thought to represent a 2-12% loss of energy intake and is estimated to be about 15% of total atmospheric methane emissions. While methanogenesis in the rumen is conducted by methanogens, PCR-based techniques have recently detected many uncultured methanogens which have a broader phylogenetic range than cultured strains isolated from the rumen. Strategies for reduction of methane emissions from the rumen have been proposed. These include 1) control of components in feed, 2) application of feed additives and 3) biological control of rumen fermentation. In any case, although it could be possible that repression of hydrogen-producing reactions leads to abatement of methane production, repression of hydrogen-producing reactions means repression of the activity of rumen fermentation and leads to restrained digestibility of carbohydrates and suppression of microbial growth. Thus, in order to reduce the flow of hydrogen into methane production, hydrogen should be diverted into propionate production via lactate or fumarate.

폴리제너레이션 성능 모사 연구 (Performance Analysis of Polygeneration Process)

  • 이시황;보닷윙;이건희;정민영;전락영;오민
    • 한국수소및신에너지학회논문집
    • /
    • 제28권4호
    • /
    • pp.352-360
    • /
    • 2017
  • Polygeneration process is widely used to pursuit high efficiency by sharing electricity, utility, refrigeration and the utilization of product chemicals. In this paper, performance analysis of the 450 MW Class polygeneration process was conducted with various syngas generated from coal and biomass gasifier. WGSR and PSA process were employed for hydrogen production and separation. Process modeling and dynamic simulation was carried out, and the results were compared with NETL report. Net power of the polygeneration process was 439 MW considering power consumption. More than 90% of CO was converted at WGSR and the hydrogen purity of PSA was more than 99.99%.

Novel oxygenation for lipopeptide production from Bacillus sp. GB16

  • Lee, Baek-Seok;Lee, Jae-Woo;Shin, Haw-Shook;Choi, Sung-Won;Choi, Ki-Hyun;Lee, Jae-Ho;Kim, Eun-Ki
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XII)
    • /
    • pp.240-244
    • /
    • 2003
  • A novel integrated method for increasing dissolved oxygen concentration in culture media has been developed. It involves adding hydrogen peroxide to the medium, which is then decomposed to oxygen and water by catalase and adding vegetable oil to the medium as antifoam agent and oxygen vector. A new apparatus for automated addition of hydrogen peroxide to the bioreactor to keep the dissolved oxygen concentration constant over the range $10-100%\;{\pm}\;5%$ was tested. A significant increase (over threefold) of cultivation time was obtained while the dissolved oxygen concentration remained stable ($30%\;{\pm}\;5%$). Therefore, use of corn oil mixed with Ca-stearate as oxygen vector and antifoam and hydrogen peroxide as oxygen source to control excessive foam that was generated by microorganism biosurfactant, GB16-BS produced at Bacillus sp. GB16 cultivation was appropriate for stable cultivation.

  • PDF