• Title/Summary/Keyword: Biological Hydrogen Production

Search Result 151, Processing Time 0.027 seconds

Reduction of Hydrogen Sulphide in Chicken Manure by Immobilized Sulphur Oxidising Bacteria Isolated from Hot Spring

  • Hidayat, M.Y.;Saud, H.M.;Samsudin, A.A.
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.116-124
    • /
    • 2019
  • The rapid development of the poultry industry has led to the production of large amounts of manure, which produce substances like hydrogen sulfide ($H_2S$) that contribute to odor pollution. $H_2S$ is a highly undesirable gas component and its removal from the environment is therefore necessary. Sulfur-oxidizing bacteria (SOB) are widely known to remove contaminating $H_2S$ due to their ability to oxidize reduced sulfur compounds. In this study, three potential SOB (designated AH18, AH25, and AH28) that were previously isolated from a hot spring in Malaysia were identified by 16S rRNA gene analysis. Laboratory-scale biological deodorization experiments were conducted to test the performance of the three isolates-in the form of pure or mixed cultures, with the cells immobilized onto alginate as a carrier-in reducing the $H_2S$ from chicken manure. On the basis of 16S rRNA phylogenetic analysis, isolate AH18 was identified as Pseudomonas sp., whereas isolates AH25 and AH28 were identified as Achromobacter sp. The most active deodorizing isolate was AH18, with an $H_2S$ reduction rate of 74.7% (p < 0.05). Meanwhile, the reduction rates for isolates AH25 and AH28 were 54.2% and 60.8% (p > 0.05), respectively. However, the $H_2S$ removal performance was enhanced in the mixed culture, with a reduction rate of 81.9% (p < 0.05). In conclusion, the three potential SOB isolates were capable of reducing the $H_2S$ from chicken manure in the form of a pure culture immobilized on alginate, and the reduction performance was enhanced in the mixed culture.

Proteomic Analysis of the GacA Response Regulator in Pseudomonas chlororaphis O6

  • Anderson, Anne J.;Kim, Young Cheol
    • Research in Plant Disease
    • /
    • v.24 no.2
    • /
    • pp.162-169
    • /
    • 2018
  • The GacS/GacA system in the root colonizer Pseudomonas chlororaphis O6 is a key regulatory system of many traits relevant to the plant probiotic nature of this bacterium. The work in this paper elucidates proteins using proteomics approach in P. chlororaphis O6 under the control of the cytoplasmic regulatory protein, GacA. A gacA mutant of P. chlororaphis O6 showed loss in production of phenazines, acyl homoserine lactones, hydrogen cyanide, and protease, changes that were associated with reduced in vitro antifungal activity against plant fungal pathogens. Production of iron-chelating siderophore was significantly enhanced in the gacA mutant, also paralleling changes in a gacS mutant. However, proteomic analysis revealed proteins (13 downregulated and 7 upregulated proteins in the mutant compared to parental strain) under GacA control that were not apparent by a proteomic study of a gacS mutant. The putative identity of the downregulated proteins suggested that a gacA mutant would have altered transport potentials. Notable would be a predicted loss of type-VI secretion and PEP-dependent transport. Study of mutants of these GacA-regulated proteins will indicate further the features required for probiotic potential in this rhizobacterium.

Molecular Identification of Vaginal Lactobacillus spp. Isolated from Korean Women

  • CHANG, CHUNG EUN;SYLVIA I. PAVLOVA;LIN TAO;EUN-KI KIM;SEUNG CHUL KIM;HYUN SHIK YUN;JAE-SEONG SO
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.312-317
    • /
    • 2002
  • Indigenous lactobacilli were isolated from vaginas of Korean women for possible use in ecological treatment of bacterial vaginosis. Vaginal swab samples were obtained from a gynecological clinic and streaked on Rogosa SL agar plates to select the most predominant lactobacilli in each sample. The preliminary identification of the isolates as lactobacilli was based on microscopic observation of Gram-positive rod-shaped cell morphology. The initial characterization was performed on 108 isolates in terms of their cell surface hydrophobicity (CSH), antimicrobial activity, and hydrogen peroxide (H₂O₂) production capability, and 10 isolates were then selected for further molecular identification. For a rapid procedure to identify lactobacilli, polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) analyses of the l6S rRNA genes were applied. The 10 selected lactobacilli and 9 different reference strains of Lactobacillus spp. were characterized by PCR-RFLP where the amplified l6S rDNA was digested with 7 different restriction endonucleases prior to analysis. DNA sequencing of the 16S rRNA gene of one particular isolate, KLB 46, that had been identified as L. crispatus by the PCR-RFLP analysis, further confirmed its identity as L. crispatus.

Anti-skin aging activities of ethanol extract from Echinodorus cordifolius L. in human keratinocytes (물수선화 에탄올 추출물의 피부 노화 억제 효과)

  • Haeun Mun;Seung-Hong Lee
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.405-412
    • /
    • 2022
  • Echinodorus cordifolius (L.) is an aquatic plant in the family Alismataceae. The anti-skin aging activity of E. cordifolius (L.) has not been yet reported. Therefore, the objective of the present study was to prepare 70% ethanol extract (ECEE) from E. cordifolius (L.) and investigate their antioxidant and anti-hyaluronidase activities for confirm the potential of anti-skin aging. ECEE showed good activities of DPPH, hydrogen peroxide scavenging, and hyaluronidase inhibition, with EC50 and IC50 values of 31.4, 300, and 450 ㎍/mL, respectively. ECEE also significantly improved cell viability and inhibited intracellular reactive oxygen species dose-dependently against 1 mM hydrogen peroxide-induced oxidative stress in immortalized human keratinocytes (HaCaT cells). Furthermore, ECEE upregulated hyaluronic acid (HA)-synthesizing enzyme hyaluronan synthase 2 (HAS2) expression level, but downregulated expression level of HA-degrading enzyme hyaluronidase 2, resulting in increased HA production in HaCaT cells. Taken together, these results suggest that ECEE shows antioxidant and anti-hyaluronidase potential and could be a functional cosmetic ingredients for anti-skin aging.

Anaerobic Biotreatment of Animal Manure - A review of current knowledge and direction for future research -

  • Hong, Jihyung
    • Journal of Animal Environmental Science
    • /
    • v.11 no.2
    • /
    • pp.97-102
    • /
    • 2005
  • Anaerobic decomposition is one of the most common processes in nature and has been extensively used in waste and wastewater treatment for several centuries. New applications and system modifications continue to be adapted making the process either more effective, less expensive, or suited to the particular waste in question and the operation to which it is to be applied. Animal manure is a highly biodegradable organic material and will naturally undergo anaerobic fermentation, resulting in release of noxious odors, such as in manure storage pits. Depending on the presence or absence of oxygen in the manure, biological treatment process may be either aerobic or anaerobic. Under anaerobic conditions, bacteria carry on fermentative metabolisms to break down the complex organic substances into simpler organic acids and then convert them to ultimately formed methane and carbon dioxide. Anaerobic biological systems for animal manure treatment include anaerobic lagoons and anaerobic digesters. Methane and carbon dioxide are the principal end products of controlled anaerobic digestion. These two gases are collectively called biogas. The biogas contains $60\~70\%$ methane and can be used directly as a fuel for heating or electrical power generation. Trace amounts of ammonia and hydrogen sulfide ($100\~300\;ppm$) are always present in the biogas stream. Anaerobic lagoons have found widespread application in the treatment of animal manure because of their low initial costs, ease of operation and convenience of loading by gravity flow from the animal buildings. The main disadvantage is the release of odors from the open surfaces of the lagoons, especially during the spring warm-up or if the lagoons are overloaded. However, if the lagoons are covered and gases are collected, the odor problems can be solved and the methane collected can be used as a fuel. Anaerobic digesters are air-tight, enclosed vessels and are used to digest manure in a well-controlled environment, thus resulting in higher digestion rates and smaller space requirements than anaerobic lagoons. Anaerobic digesters are usually heated and mixed to maximize treatment efficiency and biogas production. The objective of this work was to review a current anaerobic biological treatment of animal manure for effective new technologies in the future.

  • PDF

Biological Compounds Extracted from Codium fragile by Enzymatic Hydrolysis and Their Biological Activities (효소적 가수분해를 이용한 청각으로부터 생리활성 물질의 추출 및 가수분해물의 생리활성)

  • Lee, Ka-Hwa;Senevirathne, Mahinda;Ahn, Chang-Bum;Je, Jae-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.7
    • /
    • pp.953-959
    • /
    • 2010
  • We extracted bioactive materials from Codium fragile by enzymatic hydrolysis using four different proteases (Alcalase, Flavourzyme, Neutrase, and Protamex) and seven different carbohydrases (amyloglucosidase (AMG), Celluclast, Dextrozyme, Maltogenase, Promozyme, Termamyl, and Viscozyme), and evaluated their biological activities such as antioxidant, anti-acetylcholinesterase (AChE), and anti-inflammatory effects. All enzymatic hydrolysates showed good DPPH radical scavenging capacities, in particular, Flavourzyme and Promozyme hydrolysates possessed the highest activity. The two hydrolysates also exhibited strong hydrogen peroxide scavenging activity, $Fe^{2+}$ chelating activity, and reducing power in a dose-dependent manner. Furthermore, the two hydrolysates effectively protected DNA damage induced by hydroxyl radical by measuring the conversion of supercoiled DNA to the open circular DNA. All enzymatic hydrolysates also showed high anti-AChE inhibitory activities in a dose-dependent manner, and did not showed any significant cytotoxicity on RAW264.7 cells (p<0.05). In addition, the enzymatic hydrolysates significantly (p<0.05) inhibited lipopolysaccharide induced-nitric oxide production on RAW264.7 cells. These results suggest that the enzymatic extracts from Codium fragile would be good source as an ingredient of functional foods.

Evaluation of Rhizobacterial Isolates for Their Antagonistic Effects against Various Phytopathogenic Fungi (식물 근권에서 분리한 미생물의 식물병원성 진균에 대한 길항효과 검정)

  • Kim, Yun Seok;Kim, Sang woo;Lamsal, Kabir;Lee, Youn Su
    • The Korean Journal of Mycology
    • /
    • v.44 no.1
    • /
    • pp.36-47
    • /
    • 2016
  • This study was conducted to evaluate five different strains of rhizobacterial isolates viz. PA1, PA2, PA4, PA5 and PA12 for biological control against Colletotrichum acutatum, C. coccodes, C. gloeosporioides, C. dematium, Botrytis cinerea, Rhizoctonia solani, Sclerotinia minor and Fusarium sp. In vitro inhibition assay was performed on three different growth mediums, potato dextrose agar (PDA), tryptic soy agar (TSA), and PDA-TSA (1:1 v/v) for the selection of potential antagonistic isolates. According to the result, isolate PA2 showed the highest inhibitory effect with 65.5% against C. coccodes on PDA and with 96.5% against S. minor on TSA. However, the same isolate showed the highest inhibition with 58.5% against C. acutatum on PDA-TSA. In addition, an in vivo experiment was performed to evaluate these bacterial isolates for biological control against fungal pathogens. Plants treated with bacteria were analyzed with phytopathogens and plants inoculated with phytopathogens were treated with isolates to determine the biological control effect against fungi. According to the result, all five isolates tested showed inhibitory effects against phytopathogens at various levels. Mode of action of these rhizobacterial isolates was evaluated with siderophore production, protease assay, chitinase assay and phosphate solubilizing assay. Bacterial isolates were identified by 16S rDNA sequencing, which showed that isolates PA1 and PA2 belong to Bacillus subtilis, whereas, PA4, PA5, and PA12 were identified as Bacilus altitudinis, Paenibacillus polymyxa and Bacillus amyloliquefaciens, respectively. Results of the current study suggest that rhizobacterial isolates can be used for the plant growth promoting rhizobacteria (PGPR) effect as well as for biological control of various phytopathogens.

Biological Activities of Methanol Extracts from Green Tea Seed (녹차종자 메탄올추출물의 생리활성)

  • Yang, Hee-Sun;Kim, Jae-Yong;Kim, Hong-Chul;Nou, Ill-Sup;Seo, Kwon-Il
    • Food Science and Preservation
    • /
    • v.13 no.6
    • /
    • pp.769-773
    • /
    • 2006
  • This study was to investigate the biological activities of green tea seed methanol extract (GTSME) and compared those of green tea methanol extract (GTME) for using green tea seed as the functional food material. The hydrogen-donating activity of GTSME was over 50% at the $100 {\mu}g/mL$ concentration the activity of GTME was 21.86% at the $1000{\mu}g/mL$ concentration compared with that of control. The MDA (malondialdehyde) production was 60 Mol/g and 50 Mol/g in the mouse liver homogenate teated with GTME and GTSME of $1000{\mu}g/mL$ concentrations, respectively, and the values were lower than 86 Mol/g of control. GTME and GTSME of $1000{\mu}g/mL$ concentration inhibited the proliferation of over 50% and over 20% in A549 and SW480 human cancer cells, respectively. The morphology transformation was shown in the cancer cells treated with GTSME of $500{\mu}g/mL$ with the decrease of cell numbers lower than that of control cells numbers. The NO production was increased in a dose dependent manner in the RAW264.7 macrophage cells treated with GTME and GTSME of 1, 10, 100 and $1000{\mu}g/mL$ concentrations, and the NO production by GTSME was $2.04{\mu}M$ at $100{\mu}g/mL$ concentration, and the value was higher than $0.77{\mu}M$ by GTME.

Reforming of Hydrocarbon Fuel Using Water Jet Plasma (Water Jet 플라즈마를 이용한 탄화수소 연료 개질)

  • Kim, Seong-Cheon;Chun, Young-Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.9
    • /
    • pp.949-954
    • /
    • 2006
  • The purpose of this paper is to develop water jet plasma reactor and investigate the optimal condition of the syngas production by reforming of hydrocarbon fuel. Fuel used was propane and plasma was generated by arc discharge on water jet surface. Discharge slipping over the water surface has a number of advantages such as a source of short-wave and UV radiation, and it can be used for biological and chemical purification of water. Parametric screening studies were conducted, in which there were the variations of power ($0.18{\sim}0.74$ kW), water jet flow rate($38.4{\sim}65.6$ mL/min), electrode gap($5{\sim}15$ mm) and treatment time($2{\sim}20$ min). When the variations were 0.4 kW, 53.9 mL/min, 10 mm and 20 min respectively, result of maximum $H_2$ concentration was 61.6%, intermediates concentration were 6.1% and propane conversion rate was 99.8%.

Effect of Fruit Extract of Prunus mume on the Scavenging Activity of Reactive Oxygen Species and Melanin Production in B16F1 Cells (매실추출물이 활성산소종 소거효과와 B16F1 세포에서 멜라닌 생성에 미치는 영향)

  • Park, Hyeong-Joon;Kim, Moon-Moo;Oh, Yung-Hee
    • Journal of Life Science
    • /
    • v.22 no.7
    • /
    • pp.936-942
    • /
    • 2012
  • Prunus mume has been traditionally used as a medicinal food in Korea, Japan, and China. In particular, this fruit has been reported to have beneficial biological effects on gastritis and gastric ulcers. However, its action in relation to skin whitening has remained unclear. Accordingly, the effects of fruit extract of P. mume related to antioxidation and skin whitening were examined in this study. First, using the MTT assay, it was observed that fruit extract of P. mume below 0.1% has no cytotoxicity in B16-F1 cells as a result of cell viability. Second, the direct scavenging effects and the reducing power of the fruit extract of P. mume were evaluated in vitro on DPPH radicals, hydrogen peroxide, and superoxide. It exhibited high reducing power and scavenging activity on the aforementioned reactive oxygen species. Furthermore, we found that its protective effect against genomic DNA damage related to oxidative stress was increased in a dose-dependent manner. In addition, the fruit extract of P. mume had an inhibitory effect on melanin production induced by L-dopa. In addition, it reduced the expression level of NRF-2, SOD-1, and SOD-2 related to antioxidation in western blot analysis. These results suggest that fruit extract of P. mume could exert a whitening effect through inhibition of melanin production by its antioxidant effect.