• Title/Summary/Keyword: Biological Engineering

Search Result 9,444, Processing Time 0.033 seconds

Synthesis of Sulfonated POF-g-Styrene ion Exchange Fibers by Radiation-Induced Polymerization and Properties of Ammonia Adsorption (방사선 중합에 의한 설폰화 POF-g-Styrene 이온교환 섬유의 합성 및 암모니아 흡착)

  • Cho, In-Hee;Baek, Ki-Wan;Lee, Chang-Soo;Nho, Young-Chang;Yoon, Soo-Kyung;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • In this study, the sulfonated ion exchange fiber was synthesized by $Co^{60}\;{\gamma}-ray$ radiation-induced graft copolymerization. Degree of grafting (DG) increased with increasing the total dose and showed the highest value at 50 v/v% styrene monomer. And also, the degree of sulfonation (DS) increased with increasing the DG and reaction temperature. DS showed the maximum value at 20 min. Ion exchange capacity and swelling ratio of ion exchange fibers increased with increasing the DS and their maximum values were 4.76 meq/g and 23.5%, respectively. Ammonia adsorption increased as increasing the ammonia concentration and ion exchange capacity and remained constant over 10 cycles.

Design of Implantable Microphone for Artificial Middle Ear System

  • Kim Min-Kyu;Lim Hyung-Gyu;Yoon Young-Ho;Lee Jyung-Hyun;Park Il-Yong;Song Byung-Seop;Kim Myoung-Nam;Cho Jin-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.3
    • /
    • pp.139-144
    • /
    • 2005
  • An implantable microphone that can be utilized as part of a totally implantable hearing aid is designed and implemented. The proposed microphone is implanted in the center of the pinna, and designed to ensure the speech frequency range and the appropriate sensitivity. The characteristics of the proposed microphone are evaluated using a finite element analysis (FEA). The microphone is composed of a small electric condenser microphone, titanium case 6.2mm in diameter and 3mm high, and $10{\mu}m$ SUS316L vibrating membrane in contact with hypodermic tissue to maintain the sensitivity of the microphone. The microphone components are all made of biocompatible materials, then the assembled microphone is hermetically sealed using a polymer and ceramic. Experiments with the fabricated microphone confirm an operational bandwidth of up to 5kHz without any decline of sensitivity in 6mm of hypodermic tissue.

Antimicrobial Activity and Mechanism of Silver (은(Ag)의 미생물 불활성화 특성 및 기작)

  • Kim, Jee Yeon;Kim, Taeyoung;Yoon, Jeyong
    • Applied Chemistry for Engineering
    • /
    • v.20 no.3
    • /
    • pp.251-257
    • /
    • 2009
  • Recently, there is much interest in the antimicrobial activity of silver since silver has known to be safe and effective as a disinfectant or an antimicrobial agent against a broad spectrum of microorganisms. Although silver has been applied to various kinds of products due to the effective antimicrobial activity, the quantitative antimicrobial activity or detailed mechanism of silver is not clearly investigated yet, causing the controversy and confusion. In this review paper, we summarized the characteristics, antimicrobial activities and mechanisms, synergistic effects with other antimicrobials, and applicability of silver.

Automatic Directional-gain Control for Binaural Hearing Aids using Geomagnetic Sensors (지자기 센서를 이용한 양이 보청기의 방향성 이득 조절 연구)

  • Yang, Hyejin;An, Seonyoung;Jeong, Jaehyeon;Choi, Inyong;Woo, Jihwan
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.6
    • /
    • pp.209-214
    • /
    • 2016
  • Binaural hearing aids with a voice transmitter have been widely used to enhance sound quality in noisy environment. However, this system has a limitation on sound-source localization. In this study, we investigated automatic directional-gain control method using geomagnetic sensors to provide directional information to binaural hearing aid user. The loudness gains of two hearing aids were differently controlled based on the directional information between a speaker position and a viewing direction of hearing aids user. This relative directional information was measured by two geomagnetic sensors on hearing aids user and a speaker. The results showed that the loudness gains were accurately controlled and could provide directional information based on the cue of interaural level differences.

Effect of Preparation Parameters of Sulfur Cathodes on Electrochemical Properties of Lithium Sulfur Battery

  • Zhao, Xiaohui;Kim, Dul-Sun;Ahn, Hyo-Jun;Kim, Ki-Won;Jin, Chang-Soo;Ahn, Jou-Hyeon
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.3
    • /
    • pp.169-174
    • /
    • 2010
  • Sulfur cathodes were prepared by ball milling method with different types of electronic conductors and binders in different ball milling time. The sulfur cell with a cathode prepared in 45 min ball milling time gave an initial discharge capacity of 794mAh/g with Super-P as an electronic conductor and poly(vinylidene fluoride) as a binder. The cathode with multi-walled carbon nanotube as an electronic conductor showed an initial discharge capacity of 944 mAh/g and a discharge capacity of 300 mAh/g after 20 cycles. Cathodes with poly(ethylene oxide) and poly(vinylidene fluoride) as binders showed different cycle performance.

Improvement of Lutein and Zeaxanthin Production in Mychonastes sp. 247 by Optimizing Light Intensity and Culture Salinity Conditions

  • Seong-Joo Hong;Kyung June Yim;Young-Jin Ryu;Choul-Gyun Lee;Hyun-Jin Jang;Ji Young Jung;Z-Hun Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.260-267
    • /
    • 2023
  • In this study, we sought to improve lutein and zeaxanthin production in Mychonastes sp. 247 and investigated the effect of environmental factors on lutein and zeaxanthin productivity in Mychonastes sp. The basic medium selection and N:P ratio were adjusted to maximize cell growth in one-stage culture, and lutein and zeaxanthin production conditions were optimized using a central composite design for two-stage culture. The maximum lutein production was observed at a light intensity of 60 μE/m2/s and salinity of 0.49%, and the maximum zeaxanthin production was observed at a light intensity of 532 μE/m2/s and salinity of 0.78%. Lutein and zeaxanthin production in the optimized medium increased by up to 2 and 2.6 folds, respectively, compared to that in the basic medium. Based on these results, we concluded that the optimal conditions for lutein and zeaxanthin production are different and that optimization of light intensity and culture salinity conditions may help increase carotenoid production. This study presents a useful and potential strategy for optimizing microalgal culture conditions to improve the productivity of lutein and zeaxanthin, which has applications in the functional food field.

Regulation of m-Calpain Activity by α-Synuclein and Its C-terminal Fragment (α-syn61-140)

  • Lee, In-Hwan;Kim, Hyun-Jin;Lee, Choong-Hwan;Paik, Seung R.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.7
    • /
    • pp.1001-1004
    • /
    • 2006
  • The m-calpain activity hydrolyzing a fluorogenic substrate of N-Succinyl-Leu-Leu-Val-Tyr-7-amino-4-methylcourmarin (LLVY-AMC) was significantly stimulated by more than two-fold in the presence of 5$\mu$M $\alpha$synuclein at $15{^{\circ}C}$. The stimulation was also confirmed with azocasein. The stimulation of the peptide hydrolyzing activity required structural intactness of $\alpha$-synuclein since the C-terminally or N-terminally modified proteins such as $\beta$-synuclein, $\alpha$-syn1-97, and $\alpha$-syn61-140 did not increase the proteolytic activity. Instead, however, the N-terminally truncated $\alpha$-syn61-140 was shown to drastically suppress the calpain activity. Since the N-terminal truncation was known to be the primary cleaving event of calpain-mediated proteolysis of $\alpha$-synuclein and the $\alpha$-syn61-140 has been demonstrated to be resistant against the calpain digestion, it has been proposed that the intracellular calpain activity could be regulated in a reciprocal manner by $\alpha$-synuclein and its proteolyzed C-terminal fragment. Based on the results, a possible physiological function of $\alpha$-synuclein has been suggested as a calpain regulator which contains both stimulatory and inhibitory activities.

Control of Morphology and Subsequent Toxicity of AβAmyloid Fibrils through the Dequalinium-induced Seed Modification

  • Kim, Jin-A;Myung, Eun-Kyung;Lee, In-Hwan;Paik, Seung-R.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2283-2287
    • /
    • 2007
  • Amyloid fibril formation of amyloid β/A4 protein (Aβ) is critical to understand the pathological mechanism of Alzheimer's disease and develop controlling strategy toward the neurodegenerative disease. For this purpose, dequalinium (DQ) has been employed as a specific modifier for Aβ aggregation and its subsequent cytotoxicity. In the presence of DQ, the final thioflavin-T binding fluorescence of Aβ aggregates decreased significantly. It was the altered morphology of Aβ aggregates in a form of the bundles of the fibrils, distinctive from normal single-stranded amyloid fibrils, and the resulting reduced β-sheet content that were responsible for the decreased fluorescence. The morphological transition of Aβ aggregates assessed with atomic force microscope indicated that the bundle structure observed with DQ appeared to be resulted from the initial multimeric seed structure rather than lateral association of preformed single-stranded fibrils. Investigation of the seeding effect of the DQ-induced Aβ aggregates clearly demonstrated that the seed structure has determined the final morphology of Aβ aggregates as well as the aggregative kinetics by shortening the lag phase. In addition, the cytotoxicity was also varied depending on the final morphology of the aggregates. Taken together, DQ has been considered to be a useful chemical probe to control the cytotoxicity of the amyloid fibrils by influencing the seed structures which turned out to be central to develop therapeutic strategy by inducing the amyloid fibrils in different shapes with varied toxicities.

Acetoin Production Using Metabolically Engineered Klebsiella pneumoniae (대사공학으로 제작된 재조합 Klebsiella pneumoniae를 이용한 아세토인 생산)

  • Jang, Ji-Woong;Jung, Hwi-Min;Kim, Duck Gyun;Oh, Min-Kyu
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.237-241
    • /
    • 2017
  • Acetoin is variously applicable platform chemical in chemical and food industry. In this study, Klebsiella pneumoniae was engineered for acetoin production using metabolic engineering. From the recombinant Klebsiella pneumoniae (KMK-05) producing 2,3-butanediol, budC and dhaD genes encoding two 2,3-butanediol dehydrogenases were deleted to reduce 2,3-butanediol production. Furthermore, a transcriptional regulator, AcoK, was deleted to reduce the expression levels of acetoin degrading enzyme. Lastly, NADH oxidase was overexpressed for adjusting intracellular redox balance. The resulting strain (KJW-03-nox) produced considerable amount of acetoin, with concentration reaching 51 g/L with 2.6 g/L/h maximum productivity in 36 h fed-batch fermentation.

Exploiting Natural Diatom Shells as an Affordable Polar Host for Sulfur in Li-S Batteries

  • Hyean-Yeol Park;Sun Hyu Kim;Jeong-Hoon Yu;Ji Eun Kwon;Ji Yang Lim;Si Won Choi;Jong-Sung Yu;Yongju Jung
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.198-206
    • /
    • 2024
  • Given the high theoretical capacity (1,675 mAh g-1) and the inherent affordability and ubiquity of elemental sulfur, it stands out as a prominent cathode material for advanced lithium metal batteries. Traditionally, sulfur was sequestered within conductive porous carbons, rooted in the understanding that their inherent conductivity could offset sulfur's non-conductive nature. This study, however, pivots toward a transformative approach by utilizing diatom shell (DS, diatomite)-a naturally abundant and economically viable siliceous mineral-as a sulfur host. This approach enabled the development of a sulfurlayered diatomite/S composite (DS/S) for cathodic applications. Even in the face of the insulating nature of both diatomite and sulfur, the DS/S composite displayed vigorous participation in the electrochemical conversion process. Furthermore, this composite substantially curbed the loss of soluble polysulfides and minimized structural wear during cycling. As a testament to its efficacy, our Li-S battery, integrating this composite, exhibited an excellent cycling performance: a specific capacity of 732 mAh g-1 after 100 cycles and a robust 77% capacity retention. These findings challenge the erstwhile conviction of requiring a conductive host for sulfur. Owing to diatomite's hierarchical porous architecture, eco-friendliness, and accessibility, the DS/S electrode boasts optimal sulfur utilization, elevated specific capacity, enhanced rate capabilities at intensified C rates, and steadfast cycling stability that underscore its vast commercial promise.