• Title/Summary/Keyword: Biological Engineering

Search Result 9,444, Processing Time 0.044 seconds

Wastewater Treatment by Microorganism (미생물에 의한 발효처리)

  • ;Kunisuke Ichikawa
    • Microbiology and Biotechnology Letters
    • /
    • v.8 no.2
    • /
    • pp.135-142
    • /
    • 1980
  • The process of biological treatment of organic wastewater is principally associated with those of self-purification in the natural water environment. The treatment system has e intensive function of stabilizing wastewater more effectively than in natural water, which is like natural water concentrated in a small space. Biological treatment of wastewater involves activated sludge and various modified process, trickling filter, rotating disk, oxidation ditch, etc. for aerobic decomposition and anaerobic processes such as anaerobic decomposition and methane fermentation. The basic characteristic of these processes is the use of mixed culture for the conversion of pollutants. This review forcuses on the various kinds of microorganisms related to each treatment processes. Kinetic analysis of the activated sludge process is discussed in order to understand the basis of control and maintenance of the biological treatment process.

  • PDF

Research on the Analysis System based on the Big Data for Matlab (빅데이터 기반의 생체신호 수집 및 저장소 설계)

  • Joo, Moon-il;Seo, Young-woo;Kim, Hee-cheol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.472-474
    • /
    • 2018
  • Recent rapid creation of data has resulted in the development of big data technologies. In particular, with the development of wearable devices that measure biological signals, a variety of biological signals are growing exponentially. Thus, storage technologies are required to identify and systematically store characteristics of exponential increase in biological signals. In this paper, we will study the storage design that stores the biometrics by identifying the characteristics of the biometrics and the techniques to collect the biometrics.

  • PDF

Biological Treatability of Toxic Industrial Wastewater (독성산업폐수의 생물학적 처리)

  • 원성연;박승국;정근욱
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.4
    • /
    • pp.172-179
    • /
    • 1999
  • In this research, biological treatability test was conduced using seawater flocculated tannery wastewater by fixed biofilm reactor. During one cycle, the removal efficiency of organic corbon obtained with fixed biofilm process for treating tannery wastewater was considerably greater than that with activated sludge process. As the hydraulic retention time increased form 0.5day to 4day, removal efficiency of organic carbon was increased from 72% to 87.3%. Attached biomass in media increased with influent organic loading up to 29g MLSS/L, that could reduce the specific organic loading rate. The continual measurement of attached biomass was possible for the operation of the biofilm reactor. Equal and low nitrication rates were observed in both suspended growth activated sludge process and fixed biofilm process, despite commercial nitrifier was seeded. Through the process of treating the tannery wastewater, EC50 values which is measured by the use of Ceriopdaphnia dubia, were decreased to the extent of 50% after treatment of seawater flocculation and of 83% after biological treatment, respectively, compared to those of the untreated wastewater.

  • PDF

Challenges and New Approaches in Genomics and Bioinformatics

  • Park, Jong Hwa;Han, Kyung Sook
    • Genomics & Informatics
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • In conclusion, the seemingly fuzzy and disorganized data of biology with thousands of different layers ranging from molecule to the Internet have refused so far to be mapped precisely and predicted successfully by mathematicians, physicists or computer scientists. Genomics and bioinformatics are the fields that process such complex data. The insights on the nature of biological entities as complex interaction networks are opening a door toward a generalization of the representation of biological entities. The main challenge of genomics and bioinformatics now lies in 1) how to data mine the networks of the domains of bioinformatics, namely, the literature, metabolic pathways, and proteome and structures, in terms of interaction; and 2) how to generalize the networks in order to integrate the information into computable genomic data for computers regardless of the levels of layer. Once bioinformatists succeed to find a general principle on the way components interact each other to form any organic interaction network at genomic scale, true simulation and prediction of life in silico will be possible.

Biological Upgrading of Heavy Crude Oil

  • Leon, Vladimir;Kumar, Manoj
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.471-481
    • /
    • 2005
  • Heavy crudes (bitumen) are extremely viscous and contain high concentrations of asphaltene, resins, nitrogen and sulfur containing heteroaromatics and several metals, particularly nickel and vanadium. These properties of heavy crude oil present serious operational problems in heavy oil production and downstream processing. There are vast deposits of heavy crude oils in many parts of the world. In fact, these reserves are estimated at more than seven times the known remaining reserves of conventional crude oils. It has been proven that reserves of conventional crude oil are being depleted, thus there is a growing interest in the utilization of these vast resources of unconventional oils to produce refined fuels and petrochemicals by upgrading. Presently, the methods used for reducing viscosity and upgradation is cost intensive, less selective and environmentally reactive. Biological processing of heavy crudes may provide an ecofriendly alternative or complementary process with less severe process conditions and higher selectivity to specific reactions to upgrade heavy crude oil. This review describes the prospects and strengths of biological processes for upgrading of heavy crude oil.

Enhanced Secondary Metabolite Biosynthesis by Abiotic Elicitor in Transformed Plant Root System

  • Jeong, Gwi-Taek;Hwang, Baik;Woo, Je-Chang;Park, Don-Hee
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.417-420
    • /
    • 2005
  • Plants generally produce secondary metabolites in nature as a defense mechanism against pathogenic and insect attack. In this study, we applied several abiotic elicitors in order to enhance growth and ginseng saponin biosynthesis in the hairy roots of P. ginseng. Generally, elicitor treatments were found to inhibit the growth of the hairy roots, although simultaneously enhancing ginseng saponin biosynthesis. The addition of selenium at inoculum time did not significantly affect ginseng saponin biosynthesis. However, when 0.5 mM selenium was added as an elicitor after 21 days of culture, ginseng saponin content and productivity increased to about 1.31 and 1.33 times control levels, respectively. These results suggest that processing time for the generation of ginseng saponin in a hairy root culture can be reduced via the application of an elicitor.

  • PDF

Effects of Bio-stimulant Addition on Biological Wastewater Treatment Processes (생물학적 하·폐수처리 공정에서 생물촉진제 첨가의 영향)

  • Lee, Seockheon;Jung, Jin Young;Park, Ki Young
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.398-402
    • /
    • 2005
  • The enzyme Xeronine was investigated as a microbial activating substance in biological wastewater treatment processes. Xeronine as bio-stimulant was injected in the anaerobic sludge and the activated sludge treating wastewater in order to examine the effect of hidden benefits. Bio-stimulant did not show significant improvement of anaerobic treatablity. In the aerobic system, higher bio-stimulant dose condition resulted in slightly more removal of nitrogen and phosphorus. Floc aggregation and zone settling velocity as solid-liquid separation factors in activated sludge systems was enhanced by bio-stimulant. Effects of bio-stimulants injection on improvement of water quality and microbial activity did not clear in terms of normal operation conditions.

Sildenafil Citrate Induces Migration of Mouse Aortic Endothelial Cells and Proteinase Secretion

  • Kim, Young-Il;Oh, In-Suk;Park, Seung-Moon;Kim, Hwan-Gyu
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.402-407
    • /
    • 2006
  • Vascular endothelial cells release proteinases that degrade the extracellular matrix (ECM), thus enabling cell migration during angiogenesis and vasculogenesis. Sildenafil citrate stimulates the nitric oxide-cyclic guanosine monophosphate pathway through inhibition of phosphodiesterase type V (PDE5). In this report, we examined the mechanisms underlying sildenafil citrate-induced cell migration using cultured mouse aortic endothelial cells (MAECs). Sildenafil citrate induced migration and proteinase secretion by murine endothelial cells. Sildenafil citrate induced the secretion of matrix metalloproteinase-2 (MMP-2) and MMP-9, which is inhibited by $NF-{\kappa}B$ inhibitors. Sildenafil citrate also induced the secretion of plasmin, which is inhibited by PI 3'-kinase inhibitors. It is suggested that sildenafil citrate-induced migrating activity in endothelial cells may be accomplished by increased secretion of proteinases.

PCR Analysis of Four Length-Polmorphic Loci in Korea Population for Genotyping

  • Ryu, Jae-Song;Koo, Yoon-Mo;So, Jae-Seong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.3
    • /
    • pp.169-173
    • /
    • 2000
  • On human chromoscomes, a short sequence of DNA is known to repeat a number of times. These are called variable number of tandem repeat (VNTR) or short tandem respeat (STR) which has a short core. VNTR and STR are used in the filed of forensic science, evolution, and anthropology. In this work, we examined allele frequencies of one VNTR (YNZ22) and three STRs (NeuR, D21S11, Humth01) in a korean population sample by polymerase chain reaction (RCP) followed by high-resolution polyacrylamide gel electro-phoresis (PAGE) with silver stain. Subsequently, the polymorphism information content (PIC) was calculated : the hifhest PIC was observed in the NeuR locus (0.95680) and lowest in the Humth01 locus (0.75809).

  • PDF

Recent advances in microfluidic technologies for biochemistry and molecular biology

  • Cho, Soong-Won;Kang, Dong-Ku;Choo, Jae-Bum;Demllo, Andrew J.;Chang, Soo-Ik
    • BMB Reports
    • /
    • v.44 no.11
    • /
    • pp.705-712
    • /
    • 2011
  • Advances in the fields of proteomics and genomics have necessitated the development of high-throughput screening methods (HTS) for the systematic transformation of large amounts of biological/chemical data into an organized database of knowledge. Microfluidic systems are ideally suited for high-throughput biochemical experimentation since they offer high analytical throughput, consume minute quantities of expensive biological reagents, exhibit superior sensitivity and functionality compared to traditional micro-array techniques and can be integrated within complex experimental work flows. A range of basic biochemical and molecular biological operations have been transferred to chip-based microfluidic formats over the last decade, including gene sequencing, emulsion PCR, immunoassays, electrophoresis, cell-based assays, expression cloning and macromolecule blotting. In this review, we highlight some of the recent advances in the application of microfluidics to biochemistry and molecular biology.