Browse > Article

Sildenafil Citrate Induces Migration of Mouse Aortic Endothelial Cells and Proteinase Secretion  

Kim, Young-Il (Department of Physical Education, Yonsei University)
Oh, In-Suk (Division of Biological Sciences, Research Center of Bioactive Materials, Chonbuk National University)
Park, Seung-Moon (Division of Biological Sciences, Research Center of Bioactive Materials, Chonbuk National University)
Kim, Hwan-Gyu (Division of Biological Sciences, Research Center of Bioactive Materials, Chonbuk National University)
Publication Information
Biotechnology and Bioprocess Engineering:BBE / v.11, no.5, 2006 , pp. 402-407 More about this Journal
Abstract
Vascular endothelial cells release proteinases that degrade the extracellular matrix (ECM), thus enabling cell migration during angiogenesis and vasculogenesis. Sildenafil citrate stimulates the nitric oxide-cyclic guanosine monophosphate pathway through inhibition of phosphodiesterase type V (PDE5). In this report, we examined the mechanisms underlying sildenafil citrate-induced cell migration using cultured mouse aortic endothelial cells (MAECs). Sildenafil citrate induced migration and proteinase secretion by murine endothelial cells. Sildenafil citrate induced the secretion of matrix metalloproteinase-2 (MMP-2) and MMP-9, which is inhibited by $NF-{\kappa}B$ inhibitors. Sildenafil citrate also induced the secretion of plasmin, which is inhibited by PI 3'-kinase inhibitors. It is suggested that sildenafil citrate-induced migrating activity in endothelial cells may be accomplished by increased secretion of proteinases.
Keywords
sildenafil citrate; migration; MMPs; plasmin;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Wallis, R. M., J. D. Corbin, S. H. Francis, and P. Ellis (1999) Tissue distribution of phosphodiesterase families and the effects of sildenafil on tissue cyclic nucleotides, platelet function, and the contractile response of trabeculae carneae and aortic rings in vitro. Am. J. Cardiol. 83: 3-12
2 Lee J. B., J. S. Bae, J. H. Choi, J. H. Ham, Y. K. Min, H. M. Yang, T. Othman, and K. Shimizu (2004) Anticancer efficacies of doxorubicin, verapamil and quercetin on FM3A cells under hyperthermic temperature. Biotechnol. Bioprocess Eng. 9: 261-266   DOI   ScienceOn
3 Stetler-Stevenson, W. G. (1999) Matrix metallopro-teinases in angiogenesis: a moving target for therapeutic intervention. J. Clin. Invest. 103: 1237-1241   DOI   ScienceOn
4 Oh, I. S., J. W. Han, and H. G. Kim (2005) Water extracts of Aralia elata root bark enhances migration and matrix metalloproteinases secretion in porcine coronary artery endothelial cells. Biotechnol. Bioprocess Eng. 10: 372-377   과학기술학회마을   DOI   ScienceOn
5 Kleiner, D. E., I. M. K. Margulis, and W. G. Stetler-Stevenson (1998) Proteinase assay/zymography. pp. 5A7.1-5A7.8. In: A. Doyle, J. B. Griffiths, and D. G. Newell (eds.). Cell and Tissue Culture: Laboratory Procedures. John Wiley and Sons, Sussex, UK
6 Lee, Y. M., H. Kim, E. K. Hong, B. H. Kang, and S. J. Kim (2000) Water extract of 1:1 mixture of Phellodendron cortex and Aralia cortex has inhibitory effects on oxidative stress in kidney of diabetic rats. J. Ethnopharmacol. 73: 429-436   DOI   ScienceOn
7 Hiraoka, N., E. Allen, I. J. Apel, M. R. Gyetko, and S. J. Weiss (1998) Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins. Cell 95: 365-377   DOI   ScienceOn
8 Hajjar, K. A. (1995) Changing concepts in fibrinolysis. Curr. Opin. Hematol. 2: 345-350   DOI
9 He, C. S., S. M. Wilhelm, A. P. Pentland, B. L. Marmer, G. A. Grant, A. Z. Eisen, and G. I. Goldberg (1989) Tissue cooperation in a proteolytic cascade activating human interstitial collagenase. Proc. Natl. Acad. Sci. USA 86: 2632-2636
10 Fini, E. M., J. R. Cook, R. Mohan, and C. E. Brinckerhoff (1988) Regulation of matrix metalloproteinase gene expression. pp. 299-356. In: W. C. Parks and R. P. Mecham (eds.). Matrix Metalloproteinase. Academic Press, London, UK
11 Veikkola, T and K. Alitalo (1999) VEGFs, receptors and angiogenesis. Semin. Cancer Biol. 9: 211-220   DOI   ScienceOn
12 Frederick, J. and J. F. Woessner, Jr. (1988) The matrix metalloproteinase family, pp. 1-14. In: W. C. Parks and R. P. Mecham (eds.). Matrix Metalloproteinases. Academic Press, London, UK
13 Lucas, K. A., G. M. Pitari, S. Kazerounian, I. Ruiz-Stewart, J. Park, S. Schultz, K. P. Chepenik, and S. A. Waldman (2000) Guanylyl cyclase and signaling by cyclic GMP. Pharmacol. Rev. 52: 375-414
14 Nagase, H. (1997) Activation mechanisms of matrix met-alloproteinases. Biol. Chem. 378: 151-160
15 Oh, I. S. and H. G. Kim (2004) Vascular endothelial growth factor upregulates follistatin in human umbilical vein endothelial cells. Biotechnol. Bioprocess Eng. 9: 201-206   DOI   ScienceOn
16 Folkman, J. and P. A. D'Amore (1996) Blood vessel formation: what is its molecular basis? Cell 87: 1153-1155   DOI   ScienceOn
17 Rosen, E. M., L. Meromsky, E. Setter, D. W. Vinter, and I. D. Goldberg (1990) Quantitation of cytokine-stimulated migration of endothelium and epithelium by a new assay using microcarrier beads. Exp. Cell Res. 186: 22-31   DOI   ScienceOn
18 Ward, R. V., R. M. Hembry, J. J. Reynolds, and G. Murphy (1991) The purification of tissue inhibitor of metallopro-teinases-2 from its 72 kDa progelatinase complex. Demonstration of the biochemical similarities of tissue inhibitor of metalloproteinases-2 and tissue inhibitor of metalloproteinases-1. Biochem. J. 278: 179-187   DOI
19 Lijnen, H. R. (2001) Plasmin and matrix metalloproteinases in vascular remodeling. Thromb. Haemost. 86: 324-333
20 Folkman, J. and Y. Shing (1992) Angiogenesis. J. Biol. Chem. 267: 10931-10934
21 Risau, W. (1997) Mechanisms of angiogenesis. Nature 386:671-674   DOI   ScienceOn
22 Brooks, P. C, S. Silletti, T. L. von Schalscha, M. Fried-lander, and D. A. Cheresh (1998) Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell 92: 391-400   DOI   ScienceOn
23 Hanahan, D. (1997) Signaling vascular morphogenesis and maintenance. Science 277: 48-50   DOI   ScienceOn
24 Sanchez, L. S., S. M. de la Monte, G. Filippov, R. C. Jones, W. M. Zapol, and K. D. Bloch (1998) Cyclic-GMP-binding, cyclic-GMP-specific phosphodiesterase (PDE5) gene expression is regulated during rat pulmonary development. Pediatr. Res. 43: 163-168
25 Goldstein, I., T. F. Lue, H. Padma-Nathan, R. C. Rosen, W. D. Steers, and P. A. Wicker (1998) Oral sildenafil in the treatment of erectile dysfunction. N. Engl. J. Med. 338: 1397-1404   DOI   ScienceOn
26 Haris, S. G. and M. L. Shuler (2003) Growth of endothelial cells on microfabricated silicon nitride membranes for an in vivo model of the blood-brain barrier. Biotechnol. Bioprocess Eng. 8: 246-251   DOI   ScienceOn
27 Baramova, E. N., K. Bajou, A. Remade, C. L'Hoir, H. W Krell, U. H. Weidle, A. Noel, and J. M. Foidart (1997) Involvement of PA/plasmin system in the processing of pro-MMP-9 and in the second step of pro-MMP-2 activation. FEBS Lett. 405: 157-162   DOI   ScienceOn
28 DeClerck, Y. A., T. D. Yean, H. S. Lu, J. Ting, and K. E. Langley (1991) Inhibition of autoproteolytic activation of interstitial procollagenase by recombinant metalloproteinase inhibitor MI/TIMP-2. J. Biol. Chem. 266: 3893-3899
29 Kim, H. G. and G. Y. Koh (2000) Lipopolysaccharide activates matrix metalloproteinase-2 in endothelial cells through an NF-kB-dependent pathway. Biochem. Biophys. Res. Commun. 269: 401-405   DOI   ScienceOn
30 Brown, M. D. and O. Hudlicka (2003) Modulation of physiological angiogenesis in skeletal muscle by mechanical forces: involvement of VEGF and metalloproteinases. Angiogenesis 6: 1-14   DOI