• Title/Summary/Keyword: Biological Agents

Search Result 898, Processing Time 0.024 seconds

A Clinical Therapeutic Guideline of Antipsychotic Drugs (항정신병약물의 임상치료지침)

  • Yoon, Doh-Joon
    • Korean Journal of Biological Psychiatry
    • /
    • v.1 no.1
    • /
    • pp.7-16
    • /
    • 1994
  • I will try to serve as the basis for the development of a clinical therapeutic guideline of antipsychotic drugs. Knowing that many patients fail standard treatment recommendations, either because of insufficient efficacy or intolerance to adverse effects, led us to emphasize the importance of the guideline. The clinicians continually assimilate new information about recent advances, including : novel agents targeted to impact specific components of various neurotransmitter systems ; combination strategies ; alternative uses of existing agents ; and specialized requirements of a growing number of identified diagnostic subtypes. The cost to benefit ratio must always be considered when developing a therapeutic guideline.

  • PDF

Seed Coating for the Application of Biocontrol Agent Bacillus subtilis YBL-7 against Phytopathogens (길항세균 Bacillus subtilis YBL-7 건조포자체의 종자피막화에 의한 생물학적 방제)

  • 장종원;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.2
    • /
    • pp.243-248
    • /
    • 1995
  • Agrochemicals for the plant-disease control are criticized severely for causing environmental pollution and residual problems, and consequently microbial disease control agents are expected to be safer and more economical for sustainable agriculture. Treatment of biological control agents to seed requires the use of effective delivery systems that allow full expression of the benefical qualities of the bioprotectant. For the activation and establishment of bioprotectant around the plant seed which are able protect the seeds and seedlings from pathogen attack, the optimal liquid coating formulation was obtained using 2% sodium carboxymethyl cellulose (binder), 20% sesame dregs (solid particulate material), and dried spore of Bacillus subtilis YBL-7 (bioprotectants, 10 mg/g of seed). Suppressive of root rot was demonstrated in pot trials with coated kidney bean (Phaseolus vulgaris L.) seeds. Coated seeds with B. subtilis YBL-7 spore in F. solani-infested soil reduced disease incidence by 85% to 90% after 30 days.

  • PDF

Animal Models of Arthritis: Pharmacological Intervention

  • Ryn, Joanne van
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.41-76
    • /
    • 2001
  • Rheumatoid arthritis is an incurable chronic inflammatory and destructive arthopathy that affects 1% of the population world-wide. It has substantial personal, social and economic costs. The long-term prognosis is poor: 80 percent of affected patients will become disabled within 20 years after onset of disease. Medical costs of rheumatoid arthritis average ∼$ 6000 (US) per patient (1), Current antirheumatic drugs have limited efficacy and many side effects and more importantly they do not improve the long-term prognosis of rheumatoid arthritis (2). After a decade of few notable advances in therapy, several biological response modifiers that target pathophysiological processes in the disease have now emerged in the clinic. These new drugs are termed biological agents, and although information about their use in the clinic is still limited to short term treatment, they appear to have the ability to modify disease progress. In addition, COX-2 selective agents have now been approved that have comparable efficacy with standard NSAIDs, but fewer gastrointestinal side effects (3). Thus today many more therapeutic options are suddenly open to patients that even five years ago had little hope of relief from chronic pain and inflammation.

  • PDF

A New Paradigm Shift for the Green Synthesis of Antibacterial Silver Nanoparticles Utilizing Plant Extracts

  • Park, Youmie
    • Toxicological Research
    • /
    • v.30 no.3
    • /
    • pp.169-178
    • /
    • 2014
  • This review covers general information regarding the green synthesis of antibacterial silver nanoparticles. Owing to their antibacterial properties, silver nanoparticles are widely used in many areas, especially biomedical applications. In green synthesis practices, the chemical reducing agents are eliminated, and biological entities are utilized to convert silver ions to silver nanoparticles. Among the various biological entities, natural plant extracts have emerged as green reducing agents, providing eco-friendly routes for the preparation of silver nanomaterials. The most obvious merits of green synthesis are the increased biocompatibility of the resulting silver nanoparticles and the ease with which the reaction can be carried out. This review summarizes some of the plant extracts that are used to produce antibacterial silver nanoparticles. Additionally, background information regarding the green synthesis and antibacterial activity of silver nanoparticles is provided. Finally, the toxicological aspects of silver nanoparticles are briefly mentioned.

Novel Potential Therapeutic Targets in Autosomal Dominant Polycystic Kidney Disease from the Perspective of Cell Polarity and Fibrosis

  • Yejin Ahn;Jong Hoon Park
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.291-300
    • /
    • 2024
  • Autosomal dominant polycystic kidney disease (ADPKD), a congenital genetic disorder, is a notable contributor to the prevalence of chronic kidney disease worldwide. Despite the absence of a complete cure, ongoing research aims for early diagnosis and treatment. Although agents such as tolvaptan and mTOR inhibitors have been utilized, their effectiveness in managing the disease during its initial phase has certain limitations. This review aimed to explore new targets for the early diagnosis and treatment of ADPKD, considering ongoing developments. We particularly focus on cell polarity, which is a key factor that influences the process and pace of cyst formation. In addition, we aimed to identify agents or treatments that can prevent or impede the progression of renal fibrosis, ultimately slowing its trajectory toward end-stage renal disease. Recent advances in slowing ADPKD progression have been examined, and potential therapeutic approaches targeting multiple pathways have been introduced. This comprehensive review discusses innovative strategies to address the challenges of ADPKD and provides valuable insights into potential avenues for its prevention and treatment.

Undecanoic Acid, Lauric Acid, and N-Tridecanoic Acid Inhibit Escherichia coli Persistence and Biofilm Formation

  • Jin, Xing;Zhou, Jiacheng;Richey, Gabriella;Wang, Mengya;Choi Hong, Sung Min;Hong, Seok Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.130-136
    • /
    • 2021
  • Persister cell formation and biofilms of pathogens are extensively involved in the development of chronic infectious diseases. Eradicating persister cells is challenging, owing to their tolerance to conventional antibiotics, which cannot kill cells in a metabolically dormant state. A high frequency of persisters in biofilms makes inactivating biofilm cells more difficult, because the biofilm matrix inhibits antibiotic penetration. Fatty acids may be promising candidates as antipersister or antibiofilm agents, because some fatty acids exhibit antimicrobial effects. We previously reported that fatty acid ethyl esters effectively inhibit Escherichia coli persister formation by regulating an antitoxin. In this study, we screened a fatty acid library consisting of 65 different fatty acid molecules for altered persister formation. We found that undecanoic acid, lauric acid, and N-tridecanoic acid inhibited E. coli BW25113 persister cell formation by 25-, 58-, and 44-fold, respectively. Similarly, these fatty acids repressed persisters of enterohemorrhagic E. coli EDL933. These fatty acids were all medium-chain saturated forms. Furthermore, the fatty acids repressed Enterohemorrhagic E. coli (EHEC) biofilm formation (for example, by 8-fold for lauric acid) without having antimicrobial activity. This study demonstrates that medium-chain saturated fatty acids can serve as antipersister and antibiofilm agents that may be applied to treat bacterial infections.

Antimicrobial Effects of Lonicera japonica against Gram Positive and Gram Negative Anaerobic Bacteria

  • Rhee, Ki-Hyeong;Lee, Keyong-Ho
    • Natural Product Sciences
    • /
    • v.17 no.1
    • /
    • pp.23-25
    • /
    • 2011
  • It has been shown that the butanol extract of Lonicera japonica has antimicrobial and other potentially useful biological activities. The purpose of this study was to determine the in vitro activity of Lonicera japonica compared to other antimicrobial agents against anaerobic bacteria. Specifically, the in vitro activity of the butanol extract was investigated against 104 clinical isolates of anaerobic bacteria using an agar dilution method and the results were compared to erythromycin, cefoxitin, imipenem, clindamycin, and metronidazole. It was found that Lonicera japonica and imipenem were the most active antimicrobial agents tested.

Plant Anticancer Agents and Cancer Chemopreventives: Recent Progress

  • Kinghorn, A.Douglas
    • Proceedings of the PSK Conference
    • /
    • 2003.10a
    • /
    • pp.58-59
    • /
    • 2003
  • There is considerable interest in the screening of higher plant extracts in modem drug discovery programs to discover new chemotypes with potent and selective biological activity. Such work may be performed in different laboratory settings, including those in academic institutions. In the case of cancer, plants offer the potential for the discovery of both cancer chemotherapeutic agents and cancer chemopreventives. (omitted)

  • PDF

Discrimination of Bacillus anthracis Spores by Direct in-situ Analysis of Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry

  • Jeong, Young-Su;Lee, Jonghee;Kim, Seong-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2635-2639
    • /
    • 2013
  • The rapid and accurate identification of biological agents is a critical step in the case of bio-terror and biological warfare attacks. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has been widely used for the identification of microorganisms. In this study, we describe a method for the rapid and accurate discrimination of Bacillus anthracis spores using MALDI-TOF MS. Our direct in-situ analysis of MALDI-TOF MS does not involve subsequent high-resolution mass analyses and sample preparation steps. This method allowed the detection of species-specific biomarkers from each Bacillus spores. Especially, B. anthracis spores had specific biomarker peaks at 2503, 3089, 3376, 6684, 6698, 6753, and 6840 m/z. Cluster and PCA analyses of the mass spectra of Bacillus spores revealed distinctively separated clusters and within-groups similarity. Therefore, we believe that this method is effective in the real-time identification of biological warfare agents such as B. anthracis as well as other microorganisms in the field.