• Title/Summary/Keyword: Biolog

Search Result 161, Processing Time 0.033 seconds

Analysis of the Changes in Metabolic Diversity of Microbial Community in pH-gradient Microcosm

  • Ahn, Young-Beom;Cho, Hong-Bum;Park, Yong-Keel
    • Journal of Microbiology
    • /
    • v.37 no.1
    • /
    • pp.1-9
    • /
    • 1999
  • The Biolog redox technology was carried out for evaluation of acidification effect on microbial communities at each stage of pH gradient microcosm. While the number of heterotrophic bacterial population and activities of extracellular enzyme decreased as the pH decreased, the number of total bacteria in the microcosm was not affected. The average color development of sample at each pH-gradient showed a sigmoidal curve, and at higher pH, more overall color development appeared in Biolog plates. Average color development value in Biolog plates was stabilized at 50 hours as an optimum incubation time. The color production in the Biolog plates was caused by cell density at above pH 5.0, but by cell activity below pH 4.0. Principal component analysis of color responses revealed distinctive patterns among the pH-gradient microcosm samples.

  • PDF

Determination of Carbon Source Utilization of Bacillus and Pythium Species by Biolog$^{(R)}$ Microplate Assay

  • Chun, Se-Chul;R.W. Schneider;Chung, Ill-Min
    • Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.252-258
    • /
    • 2003
  • The carbon utilizations of Bacillus species and Pythium species were investigated by using a Biolog$^{(R)}$ microplate assay to determine if there are differences in the carbon utilizations of selected strains of these species. It may be possible to afford a competitive advantage to bacterial biological control agents by providing them with a substrate that they can readily use as a carbon source, for example, in a seed coating formulation. Microplates, identified as SFP, SFN and YT were used to identify spore-forming bacteria, nonspore-forming bacteria, and yeast, respectively. Bacterial and mycelial suspensions were adjusted to turbidities of 0.10 to 0.11 at 600 nm. One hundred microliters of each of the bacterial and mycelial suspension were inoculated into each well of each of the three types of microplates. L-arabinose, D-galactose, D-melezitose and D-melibiose of the 147 carbohydrates tested were found to be utilized only by bacteria, and not by Pythium species, by Biolog$^{(R)}$ microplate assay, and this was confirmed by traditional shake flask culture. Thus, it indicated that the Biolog$^{(R)}$ microplate assay could be readily used to search for specific carbon sources that could be utilized to increase the abilities of bacterial biological control agents to adapt to contrived environments.

A Data Base for Identification of Pseudomonas syringae pv. actinidiae, the Pathogen of Kiwifruit Bacterial Canker, Using Biolog Program (Biolog Program을 이용한 참다래 궤양병균 동정용 Data Base)

  • 고영진
    • Korean Journal Plant Pathology
    • /
    • v.13 no.2
    • /
    • pp.125-128
    • /
    • 1997
  • Reactions of Pseudomonas syringae pv. actinidiae to 95 carbon sources in a 96-well microplate (BiOLOG GN MicroPlateTM) were investigated. The bacterium used 9 carbon sources such as D-mannitol, sucrose, etc., but did not use 62 carbon sources such as $\alpha$-cyclodextrin, dextrin, etc. Based on the reactions, a user data base for identification of P. syringae pv. actinidiae was constructed in Biolog program (BiOLOG MicroLogTM 2 system). P. syringae pv. actinidiae isolates collected from kiwifruits could be identified automatically with high similarity using the user data base, which could diagnose rapidly and easily whether the tree was infected with bacterial canker or not.

  • PDF

Rapid Identification of Vibrio vulnificus in Seawater by Real-Time Quantitative TaqMan PCR

  • Wang, Hye-Young;Lee, Geon-Hyoung
    • Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.320-326
    • /
    • 2003
  • In order to identify Vibrio vulnificus in the Yellow Sea near Gunsan, Korea during the early and late summers, the efficiency of the real-time quantitative TaqMan PCR was compared to the efficiency of the conventional PCR and Biolog identification system^TM. Primers and a probe were designed from the hemolysin/cytolysin gene sequence of V. vulnificus strains. The number of positive detections by real-time quantitative TaqMan PCR, conventional PCR, and the Biolog identification system from seawater were 53 (36.8%), 36 (25%), and 10 strains (6.9%), respectively, among 144 samples collected from Yellow Sea near Gunsan, Korea. Thus, the detection method of the real-time quantitative TaqMan PCR assay was more effective in terms of accuracy than that of the conventional PCR and Biolog system. Therefore, our results showed that the real-time TaqMan probe and the primer set developed in this study can be applied successfully as a rapid screening tool for the detection of V. vulnificus.

Influence of Growing Green Manures on Soil Microbial Activity and Diversity under Organically Managed Grape-greenhouse (시설 포도 유기농 재배지에서 녹비 생육 중 녹비 종류가 토양 미생물상에 미치는 영향)

  • Park, Kee-Choon;Seo, Young-Jin;Kim, Chan-Yong;Kim, Jong-Su;Yi, Young-Keun;Seo, Ji-Ae
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.3
    • /
    • pp.260-266
    • /
    • 2008
  • The aim of present work was to assess the response of soil microbial activity and diversity to green manures under the organically managed grape-greenhouse in early spring. Hairy vetch, milk vetch, and red clover were seeded in fall, and enzymatic activities by dehydrogenase and fluorescein diacetate (FDA) hydrolase, and microbial diversities by Biolog $EcoPlate^{TM}$ and phospholipid fatty acid (PLFA) were characterized for soils sampled in early spring. Dehydrogenase activity and FDA hydrolytic activity did not differentiate the green manures but the average well color development of Biolog EcoPlate was higher in soils covered with red clover than control soil. Soil microbial functional diversity by Biolog EcoPlate differentiated the soils covered with hairy vetch and milk vetch, and Shannon diversity index by Biolog EcoPlate was higher in soils covered with hairy vetch than control soil. Principal component analysis of PLFA differentiated the soils covered with milk vetch from control soil.

Assessment of the Changes in the Microbial Community in Alkaline Soils using Biolog Ecoplate and DGGE (Biolog Ecoplate와 DGGE 방법을 이용한 알칼리화 토양의 미생물군집 변화 평가)

  • Lee, Eun Young;Hong, Sun Hwa
    • KSBB Journal
    • /
    • v.28 no.5
    • /
    • pp.275-281
    • /
    • 2013
  • Soil microbial community analysis of farmland soil sprayed with lye in order to use fertilizer in Nigeria was performed. As a control, two kinds of soils not sprayed with lye, located in Eungo and Lagos with general practice in agriculture was selected. Soil sprayed with lye was pH 8.25 through alkalization reaction, while the other soil samples were pH 6.22 and 5.94. Substrate utilization and species diversity index of soil sprayed with lye were low than that of the other soils with the analysis of Biolog ecoplate. As a result of principal component analysis, the relationship between three samples was low. Microbial community analysis was performed by DGGE and most of them were soil uncultured bacterium. Especially, Uncultured Acidobacteria and Uncultured Methylocystis sp., which had been isolated from the rhizosphere of soybean grown in that site were discovered in the soil sprayed with lye.

Bacterial Soft Rot of Celery by Erwinia carotovora subsp. carotovora (Erwinia carotovora subsp. carotovora에 의한 셀러리 세균성 무름병)

  • 박덕환;함영일;임춘근
    • Korean Journal Plant Pathology
    • /
    • v.14 no.4
    • /
    • pp.361-363
    • /
    • 1998
  • Occurrence of soft rots was observed on celery that was massively grown in Pyungchang, Kangwon-Do, Korea. Soft rot symptom appeared first on the lower parts of the celery which eventually extended into whole aboveground parts of it. The casual organism isolated from the infected lesions was identified as Erwinia carotovora subsp. carotovora based on the physiological and chemical characteristics, and on the results of the Biolog program (Biolog Inc., U. S. A.). E. carotovora subsp. carotovora is the first described bacterium which causes the bacterial soft rot disease on celery in Korea.

  • PDF

Bacterial Soft Rot of Beet by Erwinia carotovora subsp. carotovora (Erwinia carotovora subsp. carotovora에 의한 비트 세균성 무름병)

  • 박덕환;원선영;황수경;원선영;임춘근
    • Korean Journal Plant Pathology
    • /
    • v.14 no.5
    • /
    • pp.548-550
    • /
    • 1998
  • Bacterial soft rot caused damage to beets massively grown in Pyungchang, Kangwon province, Korea. The affected roots and stems became cream colored and slimy, and turned black, causing the plants to become wilt and die. The casual organism isolated from the infected plants was identified as Erinia carotovora subsp. carotovora based on physiological and biochemical characteristic, and the results of the Biolog program (Biolog Inc., U.S.A.). E. carotovora subsp. carotovora is the first discribed bacterium which causes bacterial soft rot on beet in Korea.

  • PDF

Bacterial Soft Rot of Chicory by Erwinia carotovora subsp. carotovora (Erwinia carotovora subsp. carotovora에 의한 치커리 세균성무름병)

  • 임춘근
    • Korean Journal Plant Pathology
    • /
    • v.11 no.2
    • /
    • pp.116-119
    • /
    • 1995
  • Occurrence of soft rots was observed on chicory that was massively grown in-In-jae, Kangwon-Do, Korea. At first, a creamy lesion was appeared on the chicory root, which was enlarged slowly in diameter and in depth. The affected root area became soft and mushy. This eventually resulted in wilting and death of the aboveground parts of the chicory. The causal organism isolated from the lesions was identified as Erwinia carotovora subsp. carotovora based on the physiological and chemical characteristics, and on the results of the Biolog Program (Biolog Inc. U.S.A.). Since E. carotovora subsp. carotovora is the first described bacterium that causes soft rot on chicory in Korea, we proposr to name the chicory disease caused by E. carotovora subsp. carotovora as "bacterial soft rot of chicory".

  • PDF