• Title/Summary/Keyword: Bioinformatics Software

Search Result 127, Processing Time 0.023 seconds

Parsing KEGG XML Files to Find Shared and Duplicate Compounds Contained in Metabolic Pathway Maps: A Graph-Theoretical Perspective

  • Kang, Sung-Hui;Jang, Myung-Ha;Whang, Ji-Young;Park, Hyun-Seok
    • Genomics & Informatics
    • /
    • v.6 no.3
    • /
    • pp.147-152
    • /
    • 2008
  • The basic graph layout technique, one of many visualization techniques, deals with the problem of positioning vertices in a way to maximize some measure of desirability in a graph. The technique is becoming critically important for further development of the field of systems biology. However, applying the appropriate automatic graph layout techniques to the genomic scale flow of metabolism requires an understanding of the characteristics and patterns of duplicate and shared vertices, which is crucial for bioinformatics software developers. In this paper, we provide the results of parsing KEGG XML files from a graph-theoretical perspective, for future research in the area of automatic layout techniques in biological pathway domains.

CGRID construction based on Etherboot technology and its utilization to sequence analysis (Etherboot 기반의 CGRID 구축과 서열분석에의 적용)

  • Kim Tae-Kyung;Cho Wan-Sup
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.195-208
    • /
    • 2005
  • Recently, amount of the data such as sequences is being increased rapidly due to deploying computational technique and advance of experiment tools in the biological areas. In bioinformatics, it is very significant to extract the knowledge from such huge biological data. Sequence comparisons are most frequently used to predict the function of the genes or proteins. However it takes so much time to process the persistently increasing data In this paper, we propose hardware-based grid, CGRID(Chungbuk National University GRID), to improve performance and complement existing middleware-only approach and apply it in the sequence comparison. Hardware-based approach is easy to construct, maintain, and manage the grid as not requiring the software installation individually for every node. We reduce orthologous database construction time from 33 weeks to just a week. Furthermore, CGRID guarantees that the performance increases proportionally as adding the nodes.

  • PDF

Xenie: Integration of Human 'gene to function'information in human readable & machine usable way

  • Ahn, Tae-Jin
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2000.11a
    • /
    • pp.53-55
    • /
    • 2000
  • Xenie is the JAVA application software that integrates and represents 'gene to function'information of human gene. Xenie extracts data from several heterogeneous molecular biology databases and provides integrated information in human readable and machine usable way. We defined 7 semantic frame classes (Gene, Transcript, Polypeptide, Protein_complex, Isotype, Functional_object, and Cell) as a common schema for storing and integrating gene to function information and relationship. Each of 7 semantic frame classes has data fields that are supposed to store biological data like gene symbol, disease information, cofactors, and inhibitors, etc. By using these semantic classes, Xenie can show how many transcripts and polypeptide has been known and what the function of gene products is in General. In detail, Xenie provides functional information of given human gene in the fields of semantic objects that are storing integrated data from several databases (Brenda, GDB, Genecards, HGMD, HUGO, LocusLink, OMIM, PIR, and SWISS-PROT). Although Xenie provide fully readable form of XML document for human researchers, the main goal of Xenie system is providing integrated data for other bioinformatic application softwares. Technically, Xenie provides two kinds of output format. One is JAVA persistent object, the other is XML document, both of them have been known as the most favorite solution for data exchange. Additionally, UML designs of Xenie and DTD for 7 semantic frame classes are available for easy data binding to other bioinformatic application systems. Hopefully, Xenie's output can provide more detailed and integrated information in several bioinformatic systems like Gene chip, 2D gel, biopathway related systems. Furthermore, through data integration, Xenie can also make a way for other bioiformatic systems to ask 'function based query'that was originally impossible to be answered because of separatly stored data in heterogeneous databases.

  • PDF

Creating Subnetworks from Transcriptomic Data on Central Nervous System Diseases Informed by a Massive Transcriptomic Network

  • Feng, Yaping;Syrkin-Nikolau, Judith A.;Wurtele, Eve S.
    • Interdisciplinary Bio Central
    • /
    • v.5 no.1
    • /
    • pp.1.1-1.8
    • /
    • 2013
  • High quality publicly-available transcriptomic data representing relationships in gene expression across a diverse set of biological conditions is used as a context network to explore transcriptomics of the CNS. The context network, 18367Hu-matrix, contains pairwise Pearson correlations for 22,215 human genes across18,637 human tissue samples1. To do this, we compute a network derived from biological samples from CNS cells and tissues, calculate clusters of co-expressed genes from this network, and compare the significance of these to clusters derived from the larger 18367Hu-matrix network. Sorting and visualization uses the publicly available software, MetaOmGraph (http://www.metnetdb.org/MetNet_MetaOm-Graph.htm). This identifies genes that characterize particular disease conditions. Specifically, differences in gene expression within and between two designations of glial cancer, astrocytoma and glioblastoma, are evaluated in the context of the broader network. Such gene groups, which we term outlier-networks, tease out abnormally expressed genes and the samples in which this expression occurs. This approach distinguishes 48 subnetworks of outlier genes associated with astrocytoma and glioblastoma. As a case study, we investigate the relationships among the genes of a small astrocytoma-only subnetwork. This astrocytoma-only subnetwork consists of SVEP1, IGF1, CHRNA3, and SPAG6. All of these genes are highly coexpressed in a single sample of anaplastic astrocytoma tumor (grade III) and a sample of juvenile pilocytic astrocytoma. Three of these genes are also associated with nicotine. This data lead us to formulate a testable hypothesis that this astrocytoma outlier-network provides a link between some gliomas/astrocytomas and nicotine.

Approximate Periods of Strings based on Distance Sum for DNA Sequence Analysis (DNA 서열분석을 위한 거리합기반 문자열의 근사주기)

  • Jeong, Ju Hui;Kim, Young Ho;Na, Joong Chae;Sim, Jeong Seop
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.2
    • /
    • pp.119-122
    • /
    • 2013
  • Repetitive strings such as periods have been studied vigorously in so diverse fields as data compression, computer-assisted music analysis, bioinformatics, and etc. In bioinformatics, periods are highly related to repetitive patterns in DNA sequences so called tandem repeats. In some cases, quite similar but not the same patterns are repeated and thus we need approximate string matching algorithms to study tandem repeats in DNA sequences. In this paper, we propose a new definition of approximate periods of strings based on distance sum. Given two strings $p({\mid}p{\mid}=m)$ and $x({\mid}x{\mid}=n)$, we propose an algorithm that computes the minimum approximate period distance based on distance sum. Our algorithm runs in $O(mn^2)$ time for the weighted edit distance, and runs in O(mn) time for the edit distance, and runs in O(n) time for the Hamming distance.

Differential gene expression analysis of human cumulus cells

  • Demiray, Sirin Bakti;Goker, Ege Nazan Tavmergen;Tavmergen, Erol;Yilmaz, Ozlem;Calimlioglu, Nilufer;Soykam, Huseyin Okan;Oktem, Gulperi;Sezerman, Ugur
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.46 no.2
    • /
    • pp.76-86
    • /
    • 2019
  • Objective: This study was performed to explore the possibility that each oocyte and its surrounding cumulus cells might have different genetic expression patterns that could affect human reproduction. Methods: Differential gene expression analysis was performed for 10 clusters of cumulus cells obtained from 10 cumulus-oocyte complexes from 10 patients. Same procedures related to oocyte maturation, microinjection, and microarray analyses were performed for each group of cumulus cells. Two differential gene expression analyses were performed: one for the outcome of clinical pregnancy and one for the outcome of live birth. Results: Significant genes resulting from these analyses were selected and the top 20 affected pathways in each group were analyzed. Circadian entrainment is determined to be the most affected pathway for clinical pregnancy, and proteoglycans in cancer pathway is the most affected pathway for live birth. Circadian entrainment is also amongst the 12 pathways that are found to be in top 20 affected pathways for both outcomes, and has both lowest p-value and highest number of times found count. Conclusion: Although further confirmatory studies are necessary, findings of this study suggest that these pathways, especially circadian entrainment in cumulus cells, may be essential for embryo development and pregnancy.

Screening of Differentially Expressed Genes Related to Bladder Cancer and Functional Analysis with DNA Microarray

  • Huang, Yi-Dong;Shan, Wei;Zeng, Li;Wu, Yang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.8
    • /
    • pp.4553-4557
    • /
    • 2013
  • Objective: The purpose of this study was to identify genes related to bladder cancer with samples from normal and disease cases by microarray chip. Methods: After downloading the gene expression profile GSE3167 from Gene Expression Omnibus database which includes 50 bladder samples, comprising 9 normal and 41 disease samples, differentially expressed genes were identified with packages in R language. The selected differentially expressed genes were further analyzed using bioinformatics methods. Firstly, molecular functions, biological processes and cell component analysis were researched by software Gestalt. Then, software String was used to search interaction relationships among differentially expressed genes, and hub genes of the network were selected. Finally, by using plugins of software Cytoscape, Mcode and Bingo, module analysis of hub-genes was performed. Results: A total of 221 genes were identified as differentially expressed by comparing normal and disease bladder samples, and a network as well as the hub gene C1QBP was obtained from the network. The C1QBP module had the closest relationship to production of molecular mediators involved in inflammatory responses. Conclusion: We obtained differentially expressed genes of bladder cancer by microarray, and both PRDX2 and YWHAZ in the module with hub gene C1QBP were most significantly related to production of molecular mediators involved in inflammatory responses. From knowledge of inflammatory responses and cancer, our results showed that, the hub gene and its module could induce inflammation in bladder cancer. These related genes are candidate bio-markers for bladder cancer diagnosis and might be helpful in designing novel therapies.

Analysis, Detection and Prediction of some of the Structural Motifs in Proteins

  • Guruprasad, Kunchur
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.325-330
    • /
    • 2005
  • We are generally interested in the analysis, detection and prediction of structural motifs in proteins, in order to infer compatibility of amino acid sequence to structure in proteins of known three-dimensional structure available in the Protein Data Bank. In this context, we are analyzing some of the well-characterized structural motifs in proteins. We have analyzed simple structural motifs, such as, ${\beta}$-turns and ${\gamma}$-turns by evaluating the statistically significant type-dependent amino acid positional preferences in enlarged representative protein datasets and revised the amino acid preferences. In doing so, we identified a number of ‘unexpected’ isolated ${\beta}$-turns with a proline amino acid residue at the (i+2) position. We extended our study to the identification of multiple turns, continuous turns and to peptides that correspond to the combinations of individual ${\beta}$ and ${\gamma}$-turns in proteins and examined the hydrogen-bond interactions likely to stabilize these peptides. This led us to develop a database of structural motifs in proteins (DSMP) that would primarily allow us to make queries based on the various fields in the database for some well-characterized structural motifs, such as, helices, ${\beta}$-strands, turns, ${\beta}$-hairpins, ${\beta}$-${\alpha}$-${\beta}$, ${\psi}$-loops, ${\beta}$-sheets, disulphide bridges. We have recently implemented this information for all entries in the current PDB in a relational database called ODSMP using Oracle9i that is easy to update and maintain and added few additional structural motifs. We have also developed another relational database corresponding to amino acid sequences and their associated secondary structure for representative proteins in the PDB called PSSARD. This database allows flexible queries to be made on the compatibility of amino acid sequences in the PDB to ‘user-defined’ super-secondary structure conformation and vice-versa. Currently, we have extended this database to include nearly 23,000 protein crystal structures available in the PDB. Further, we have analyzed the ‘structural plasticity’ associated with the ${\beta}$-propeller structural motif We have developed a method to automatically detect ${\beta}$-propellers from the PDB codes. We evaluated the accuracy and consistency of predicting ${\beta}$ and ${\gamma}$-turns in proteins using the residue-coupled model. I will discuss results of our work and describe databases and software applications that have been developed.

  • PDF

Importance of Selecting The characterized Housekeeping Genes as Reference Genes in Various Species (다양한 종에서 하우스키핑 유전자 선택의 중요성)

  • Chai, Han-Ha;Noh, Yun Jeong;Roh, Hee-Jong;Lim, Dajeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.417-428
    • /
    • 2020
  • Housekeeping genes are expressed in cells of all organisms and perform basic cellular functions such as energy generation, substance synthesis, cell death, and cell defense. Accordingly, the expression levels of housekeeping genes are relatively constant, and thus they are used as reference genes in gene expression studies, such as protein expression and mRNA expression analysis of target genes. However, the levels of expression of these genes may be different among various tissues or cells and may change under certain circumstances. Therefore, it is important to select the best reference gene for specific gene expression research by exploring the stability of housekeeping gene expression. This review summarizes housekeeping genes found in humans, chickens, pigs, and rats in the literature and estimates expression stability using geNorm, NormFinder, and BestKeeper software. The most suitable reference housekeeping gene can selected based on expression stability according to the experimental conditions of the gene expression study and can thus be applied to data normalization.

Generating Pylogenetic Tree of Homogeneous Source Code in a Plagiarism Detection System

  • Ji, Jeong-Hoon;Park, Su-Hyun;Woo, Gyun;Cho, Hwan-Gue
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.809-817
    • /
    • 2008
  • Program plagiarism is widespread due to intelligent software and the global Internet environment. Consequently the detection of plagiarized source code and software is becoming important especially in academic field. Though numerous studies have been reported for detecting plagiarized pairs of codes, we cannot find any profound work on understanding the underlying mechanisms of plagiarism. In this paper, we study the evolutionary process of source codes regarding that the plagiarism procedure can be considered as evolutionary steps of source codes. The final goal of our paper is to reconstruct a tree depicting the evolution process in the source code. To this end, we extend the well-known bioinformatics approach, a local alignment approach, to detect a region of similar code with an adaptive scoring matrix. The asymmetric code similarity based on the local alignment can be considered as one of the main contribution of this paper. The phylogenetic tree or evolution tree of source codes can be reconstructed using this asymmetric measure. To show the effectiveness and efficiency of the phylogeny construction algorithm, we conducted experiments with more than 100 real source codes which were obtained from East-Asia ICPC(International Collegiate Programming Contest). Our experiments showed that the proposed algorithm is quite successful in reconstructing the evolutionary direction, which enables us to identify plagiarized codes more accurately and reliably. Also, the phylogeny construction algorithm is successfully implemented on top of the plagiarism detection system of an automatic program evaluation system.