• Title/Summary/Keyword: Bioimaging

Search Result 39, Processing Time 0.021 seconds

MEMS Technology for Biophotonic Applications (바이오포토닉스응용을 위한 MEMS 미세광학소자의 개발)

  • Jeong, Gi-Hun
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.02a
    • /
    • pp.387-388
    • /
    • 2009
  • Biophotonics is an emerging area in a fusion of biology and photonics, especially in advanced bioimaging, optical biosensors, photomodulation, and biochip optical read-out, and optical manipulation. This emerging area also creates many opportunities for interdisciplinary study of biology and photonics. Micro-Electro-Mechanical-System(MEMS) is an attractive technology in miniaturizing sensors and actuactors. For last decade, it has contributed to the development for active and passive small and integrated optical components in optical communication. Recently, this technology is also merging into biology for high sensitive biosensing and high resolution and fast bioimaging in small form factor. In this talk, some key advantages of small optical components and recent biophotonic MEMS achievement will be discussed for miniaturized advanced biophotonic systems.

  • PDF

Simultaneous Synthesis and Rapid Consolidation of Nanostructured (Ti,Mo)C and Its Mechanical Properties (펄스전류 가열에 의한 나노구조의 (Ti,Mo)C 합성과 동시 급속소결 및 기계적 성질)

  • Jo, Hyoung-Gon;Kwon, Hanjung;Shon, In-Jin
    • Korean Journal of Materials Research
    • /
    • v.23 no.11
    • /
    • pp.620-624
    • /
    • 2013
  • Nanocrystalline materials have recently received significant attention in the area of advanced materials engineering due to their improved physical and mechanical properties. A solid-solution nanocrystalline powder, (Ti,Mo)C, was prepared via high-energy milling of Ti-Mo alloys with graphite. Using XRD data, the synthesis process was investigated in terms of the phase evolution. Rapid sintering of nanostuctured (Ti,Mo)C hard materials was performed using a pulsed current activated sintering process (PCAS). This process allows quick densification to near theoretical density and inhibits grain growth. A dense, nanostructured (Ti,Mo)C hard material with a relative density of up to 96 % was produced by simultaneous application of 80 MPa and a pulsed current for 2 min. The average grain size of the (Ti,Mo)C was lower than 150 nm. The hardness and fracture toughness of the dense (Ti,Mo)C produced by PCAS were also evaluated. The fracture toughness of the (Ti,Mo)C was higher than that of TiC.

2D-Covalent organic frameworks for bioimaging and therapeutic applications

  • Chanho Park;Dong Wook Kim
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.2
    • /
    • pp.171-176
    • /
    • 2020
  • Covalent organic frameworks (COFs) are porous crystalline polymers in which organic units are linked by covalent bonds and have a regular arrangement at the atomic level. Recently, the COFs have been much attention in bio-medical area such as bio-imaging, drug delivery, and therapeutics. These 2D nanoparticles are proving their value in nanomedicine due to their large surface area, functionalization through functional groups exposed on the surface, chemical stability due to covalent bonding, and high biocompatibility. The high ω-electron density and crystallinity of COFs makes it a promising candidate for bioimaging probes, and its porosity and large surface area make it possible to be utilized as a drug delivery vehicle. However, the low dispersibility in water, the cytotoxicity problems of COFs are still challenged to be solved in the future. In this regard, several efforts that increase the degree of dispersion through functionalization on the surface of COFs for the application to the biomedical field have been reported. In this review, we would like to describe the advantages and limitations of COFs for bio-imaging and anti-cancer treatment.

Green synthesis of fluorescent carbon dots from carrot juice for in vitro cellular imaging

  • Liu, Yang;Liu, Yanan;Park, Mira;Park, Soo-Jin;Zhang, Yifan;Akanda, Md Rashedunnabi;Park, Byung-Yong;Kim, Hak Yong
    • Carbon letters
    • /
    • v.21
    • /
    • pp.61-67
    • /
    • 2017
  • We report the use of carrot, a new and inexpensive biomaterial source, for preparing high quality carbon dots (CDs) instead of semi-conductive quantum dots for bioimaging application. The as-derived CDs possessing down and up-conversion photoluminescence features were obtained from carrot juice by commonly used hydrothermal treatment. The corresponding physiochemical and optical properties were investigated by electron microscopy, fluorescent spectrometry, and other spectroscopic methods. The surfaces of obtained CDs were highly covered with hydroxyl groups and nitrogen groups without further modification. The quantum yield of as-obtained CDs was as high as 5.16%. The cell viability of HaCaT cells against a purified CD aqueous solution was higher than 85% even at higher concentration ($700{\mu}g\;mL^{-1}$) after 24 h incubation. Finally, CD cultured cells exhibited distinguished blue, green, and red colors, respectively, during in vitro imaging when excited by three wavelength lasers under a confocal microscope. Offering excellent optical properties, biocompatibility, low cytotoxicity, and good cellular imaging capability, the carrot juice derived CDs are a promising candidate for biomedical applications.

Electrochemical Biosensors based on Nanocomposites of Carbon-based Dots

  • Ngo, Yen-Linh Thi;Jana, Jayasmita;Chung, Jin Suk;Hur, Seung Hyun
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.499-513
    • /
    • 2020
  • Among the many studies of carbon-based nanomaterials, carbon-based dots (CDs) have attracted considerable interest owing to their large surface area, intrinsic low-toxicity, excellent biocompatibility, high solubility, and low-cost with environmentally friendly routes, as well as their ability for modification with other nanomaterials. CDs have several applications in biosensing, photocatalysis, bioimaging, and nanomedicine. In addition, the fascinating electrochemical properties of CDs, including high active surface area, excellent electrical conductivity, electrocatalytic activity, high porosity, and adsorption capability, make them potential candidates for electrochemical sensing materials. This paper reviews the recent developments and synthesis of CDs and their composites for the proposed electrochemical sensing platforms. The electrochemical principles and future perspective and challenges of electrochemical biosensors are also discussed based on CDs-nanocomposites.

Polarity Probing Two-Photon Fluorophores Based on [2.2]Paracyclophane

  • Woo, Han-Young;Korystov, Dmitry;Jin, Young-Eup;Suh, Hong-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2253-2260
    • /
    • 2007
  • A series of tetra donor substituted [2.2]paracyclophane-based two-photon absorption (TPA) fluorophores were synthesized in neutral and cationic forms. The imaging activity of overall set of fluorophores was studied by the two-photon induced fluorescence (TPIF) method in a range of solvents. We also measured a clear progression toward a longer photoluminescence lifetime with increasing solvent polarity (intrinsic photoluminescence lifetime, τi: ~2 ns in toluene → 12-16 ns in water). The paracyclophane fluorophores with this unique property can be utilized as an optical polarity probe for the biomolecular substrates. The combined measurement of the two-photon fluorescence microscopy (TPM) cell image and TPIF lifetime can give us a better understanding of the biological processes and local environments in the cells.

Platinum nanocomposites and its applications: A review

  • Sharon, Madhuri;Nandgavkar, Isaac;Sharon, Maheshwar
    • Advances in materials Research
    • /
    • v.6 no.2
    • /
    • pp.129-153
    • /
    • 2017
  • Platinum is a transition metal that is very resistant to corrosion. It is used as catalyst for converting methyl alcohol to formaldehyde, as catalytic converter in cars, for hydrocracking of heavy oils, in Fuel Cell devices etc. Moreover, Platinum compounds are important ingredient for cancer chemotherapy drugs. The nano forms of Platinum due to its unique physico-chemical properties that are not found in its bulk counterpart, has been found to be of great importance in electronics, optoelectronics, enzyme immobilization etc. The stability of Platinum nanoparticles has supported its use for the development of efficient and durable proton exchange membrane Fuel Cells. The present review concentrates on the use of Platinum conjugated with various metal or compounds, to fabricate nanocomposites, to enhance the efficiency of Platinum nanoparticles. The recent advances in the synthesis methods of different Platinum-based nanocomposites and their applications in Fuel Cell, sensors, bioimaging, light emitting diode, dye sensitized solar cell, hydrogen generation and in biosystems has also been discussed.

Broadband Light Absorption Using Gap Plasmon Resonance

  • Ko, Hyungduk;Kim, Jung Hyuk;Lim, Ju Won;Lee, Gi Yong;Jang, Ho Seong;Ko, Doo-Hyun;Han, Il Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.133.2-133.2
    • /
    • 2014
  • A gap surface plasmon resonator have received considerable attention because it can dramatically enhance the absorption of the electromagnetic field. However, whereas most of studies were just focused on the absorption within a narrow range of wavelength, few studies have been performed for the broadband absorption in the visible range. Therefore, in this study, we discuss methods that can induce broadband light absorption using gap plasmon resonance in visible regime. The gap plasmon resonator will offer great potential for appplications to solar cells and bioimaging.

  • PDF