• Title/Summary/Keyword: Biogas generation

Search Result 80, Processing Time 0.024 seconds

Study on the Suitability of Bioenergy System from Food waste for Building Load (음식물쓰레기 바이오에너지 이용시스템의 건축물 적용성에 관한 연구)

  • Kang, Bum-Sung;Choi, Mi-Young;Ko, Myeong-Jin;Kim, Yong-Shik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.132-140
    • /
    • 2008
  • Recently, the whole world is concerned about the saving energy and protective environment, so interest is increasing in new and renewable energy. Specially the Bioenergy continuity is possible, the research is advanced by the energy which it contributes in environmental conservation. From the research which it sees consequently it investigates about co-generation system of domestic bio-energy, it is used to analyze the electricity and heat energy of buildings that Energy Consumption Survey of Korea Energy Management Corporation and food waste generation quantity of Ministry of Environment. This paper is analyzed that application of food waste Biogas plant system.

  • PDF

Mitigation of Methane Emission and Energy Recycling in Animal Agricultural Systems

  • Takahashi, J.;Mwenya, B.;Santoso, B.;Sar, C.;Umetsu, K.;Kishimoto, T.;Nishizaki, K.;Kimura, K.;Hamamoto, O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.8
    • /
    • pp.1199-1208
    • /
    • 2005
  • Abatement of greenhouse gas emitted from ruminants and promotion of biogas energy from animal effluent were comprehensively examined in each anaerobic fermentation reactor and animal experiments. Moreover, the energy conversion efficiency of biomass energy to power generation were evaluated with a gas engine generator or proton exchange membrane fuel cell (PEMFC). To mitigate safely rumen methanogenesis with nutritional manipulation the suppressing effects of some strains of lactic acid bacteria and yeast, bacteriocin, $\beta$1-4 galactooligosaccharide, plant extracts (Yucca schidigera and Quillaja saponarea), L-cysteine and/or nitrate on rumen methane emission were compared with antibiotics. For in vitro trials, cumulative methane production was evaluated using the continuous fermented gas qualification system inoculated with the strained rumen fluid from rumen fistulated Holstein cows. For in vivo, four sequential ventilated head cages equipped with a fully automated gas analyzing system were used to examine the manipulating effects of $\beta$1-4 galactooligosaccharide, lactic acid bacteria (Leuconostoc mesenteroides subsp. mesenteroides), yeast (Trichosporon serticeum), nisin and Yucca schidigera and/or nitrate on rumen methanogenesis. Furthermore, biogas energy recycled from animal effluent was evaluated with anaerobic bioreactors. Utilization of recycled energy as fuel for a co-generator and fuel cell was tested in the thermophilic biogas plant system. From the results of in vitro and in vivo trials, nitrate was shown to be a strong methane suppressor, although nitrate per se is hazardous. L-cysteine could remove this risk. $\beta$1-4 galactooligosaccharide, Candida kefyr, nisin, Yucca schidigera and Quillaja saponarea are thought to possibly control methanogenesis in the rumen. It is possible to simulate the available energy recycled through animal effluent from feed energy resources by making total energy balance sheets of the process from feed energy to recycled energy.

Trigeneration Based on Solid Oxide Fuel Cells Driven by Macroalgal Biogas (거대조류 바이오가스를 연료로 하는 고체산화물 연료전지를 이용한 삼중발전)

  • Effendi, Ivannie;Liu, J. Jay
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.96-101
    • /
    • 2020
  • In this paper, the commercial feasibility of trigeneration, producing heat, power, and hydrogen (CHHP) and using biogas derived from macroalgae (i.e., seaweed biomass feedstock), are investigated. For this purpose, a commercial scale trigeneration process, consisting of three MW solid oxide fuel cells (SOFCs), gas turbine, and organic Rankine cycle, is designed conceptually and simulated using Aspen plus, a commercial process simulator. To produce hydrogen, a solid oxide fuel cell system is re-designed by the removal of after-burner and the addition of a water-gas shift reactor. The cost of each unit operation equipment in the process is estimated through the calculated heat and mass balances from simulation, with the techno-economic analysis following through. The designed CHHP process produces 2.3 MW of net power and 50 kg hr-1 of hydrogen with an efficiency of 37% using 2 ton hr-1 of biogas from 3.47 ton hr-1 (dry basis) of brown algae as feedstock. Based on these results, a realistic scenario is evaluated economically and the breakeven electricity selling price (BESP) is calculated. The calculated BESP is ¢10.45 kWh-1, which is comparable to or better than the conventional power generation. This means that the CHHP process based on SOFC can be a viable alternative when the technical targets on SOFC are reached.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Transportation and City Gas: Design and Operation Guideline (고품질화 바이오가스 이용 기술지침 마련을 위한 연구(III): 도시가스 및 수송용 - 기술지침(안) 중심으로)

  • Moon, HeeSung;Kwon, Junhwa;Park, Hoyeon;Jeon, Taewan;Shin, Sunkyung;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.2
    • /
    • pp.67-73
    • /
    • 2019
  • In this study, to optimize the production and utilization of biogas for organic waste resources, the precision monitoring of on-site facilities and the energy balance by facility were analyzed, and the solutions for field problems were investigated, and the design and operation guidelines for pretreatment facilities and generators were presented. Gas pre-treatment is required to solve frequent failures and efficiency degradation in operation of high quality refining facilities, and processing processes such as desulfurization, dehumidification, deoxidization, dust treatment, volatile organic compounds, etc. Since these processes are substances that are also eliminated from the high-quality process, quantitative guidelines are not presented in the gas pretreatment process, but are suggested to operate during the processing process as a qualitative guideline. In particular, dust, siloxane, and volatile organic compounds are the main cause of frequent failure of high-quality processes if they are not removed from the gas pretreatment process. Design of the biogas high-quality process. The operation guidelines provide quality standards [Methane content (including propane) of 95% or more] with 90% or more utilization of the total gas generation, two systems, and a margin of 10% or more. It also proposed installing gas equalization tank, installing thermal automatic control system for controlling equalization of auxiliary fuel, installing dehumidification device at the back of high quality for removing moisture generated in the process of gas compression, installing heat-resisting facilities to prevent freezing of facilities in winter and reducing efficiency, and installing membrane facilities in particular.

Economic Analysis of Livestock Manure Solid Fuel Manufacturing and Power Generation Facility (가축분뇨 고체연료 제조 및 발전시설의 경제성 분석)

  • Kim, Chang-Gyu;Yoon, Young-Man
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.2
    • /
    • pp.29-42
    • /
    • 2022
  • The government promotes the 2050 carbon-neutral policy. Therefore, the concern to convert livestock manure into energy is increasing for the reduction of greenhouse gases generated in the livestock industry sector. In this study, the economic feasibility of the livestock manure solid fuel power generation facility, which is a major consumer of livestock manure solid fuel, was assessed to expand the demand for livestock manure solid fuel. The production cost of livestock manure solid fuel showed the lowest production cost of 97.4 thousand won/ton when dried using solid fuel at a 200 ton/day scale bio-drying facility. The livestock manure solid fuel power generation facility showed economic feasibility at a REC weight of 1.5 in the case of the bio-drying facility, so it was necessary to set a REC weight of 1.5 or more to expand the demand for livestock manure solid fuel. The conversion of livestock manure into solid fuel has various environmental benefits, such as the reduction of greenhouse gases and the effect of reducing non-point pollutants in the water system. Therefore, in order to expand livestock manure solid fuel production facility, it was required to review the feasibility including various environmental benefits.

Estimation of Biomass Resources Potential (바이오매스 자원 잠재량 산정)

  • Lee, Joon-pyo;Park, Soon-chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.1
    • /
    • pp.19-26
    • /
    • 2016
  • Biomass has been used for energy sources from the prehistoric age. Biomass are converted into solid, liquid or gaseous fuels and are used for heating, electricity generation or for transportation recently. Solid biofuels such as bio-chips or bio-pellet are used for heating or electricity generation. Liquid biofuels such as biodiesel and bioethanol from sugars or lignocellulosics are well known renewable transportation fuels. biogas produced from organic waste are also used for heating, generation and vehicles. Biomass resources for the production of above mentioned biofuels are classified under following 4 categories, such as forest biomass, agricultural residue biomass, livestock manure and municipal organic wastes. The energy potential of those biomass resources existing in Korea are estimated. The energy potential for dry biomass (forest, agricultural, municipal waste) were estimated from their heating value contained, whereas energy potential of wet biomass (livestock manure, food waste, waste sludge) is calculated from the biological methane potential of them on annual basis. Biomass resources potential of those 4 categories in Korea are estimated to be as follows. Forest biomass 355.602 million TOE, agricultural biomass 4.019 million TOE, livestock manure biomass 1.455 million TOE, and municipal organic waste 1.074 million TOE are available for biofuels production annually.

Biogas Production from Agricultural Wastes and Residues in Tropical Region (열대지역(熱帶地域)에서 농산폐유기물(農産廢有機物)을 원료(原料)로한 멘탄가스발생(發生))

  • Joo, Yeong-Hee;Jeon, Yong-Woon;Calilung, Edwin J.;Elepano, Arnold R.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.4
    • /
    • pp.325-335
    • /
    • 1985
  • Biogas production from agricultural wastes were summarized as follows: 1. Biogas Generation Characteristics of Various Manures and Residues a. Gas yield from crop residues like rice straw, rice hull, corn stalk and coconut husk can be improved by addition of animal manures. b. Gas yield from coconut husk can be improved through aerobic fermentation for at least one week before loading in the digester. c. Gas yield from fresh rice straw is better than from pre-fermented one, whether alone or in combination with animal manures. d. Initial study has shown that fresh azolla can be substituted for animal manures in manurerice straw combinations and gas yield derived based on unit volatile solids loaded is actually better than for manure-residue combinations. e. Gas production is highly sensitive to substrate pH and becomes almost nil at a pH of below 6. 2. Effect of ambient conditions and other factors on biogas production in a house hold-size digester. a. Results showed that compaction of rice straw in straw-manure combination can reduce gas yield compared with loosely mixed straw. b. The effective gas production period extended to 70 days using freshly threshed rice straw and fresh cattle manure as feed material. c. Underground and above ground digesters with shade have relatively more stable substrate temperature than aboveground exposed digesters. This relative temperature instability may likely be the reason for lower gas yield for the exposed aboveground digester loaded with loose straw-cattle manure substrate, compared with the underground digester with the same substrate. 3. Economic Analysis a. Based on prevailing costs of fuel, materials, and labor in the Philippines, biogas produced from the household size system is cheaper than either LPG or kerosene. b. If other benefits like organic fertilizer, pollution control and convenience are considered, biogas will surely be the best alternative fuel source.

  • PDF

Study on bio-gas production efficiency from industrial organic waste (산업계 유기성폐기물 바이오가스 생산 효율에 관한 연구)

  • Lee, Horyeong;Jin, Hyoeon;Shin, Daeyewn
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.5
    • /
    • pp.629-636
    • /
    • 2012
  • This study focuses on the feasibility of bio-gas production using anaerobic digestion by measuring methane generation and biodegradability through the BMP test of industrial organic wastes. Organic wastes consist of entrails of pigs and organic residues of rumen generated from slaughter houses, wastewater sludge from slaughter waste water, fish offal and residues of vegetables from public wholesale markets, and wastewater sludge from the process of wastewater treatment in paper mill. The cumulative methane production by BMP test ranges from 149.3 ml/g-VS to 406.6 ml/g-VS and this is similar to methane generation of the normal wastewater sludge and food waste. As a result of measurement of biodegradability, wastewater sludge (S1 ~ S4) is low, ranging from 27.1% to 58.9 % and organic residues of rumen (G1) is low at 49.6 %. In conclusion, it turned out that raising the hydrolysis by various pre-treatments is necessary in order to produce bio-gas by using industrial organic wastes.

A Study on the Cause of Scale Formation in Biogas Plant with Food Wastewater (음식물류 폐수를 이용한 바이오가스 생산시설의 스케일 형성요인에 관한 연구)

  • Bae, Young-Shin;Chun, Seung-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.9
    • /
    • pp.660-665
    • /
    • 2013
  • To find out the major cause of scale formation in digestion facility, a componential analysis of scale and a digestion experiment for food wastewater were conducted. The analysis indicated that grease in food wastewater was closely connected to the organic component of scale. It is also indicated that grease-removed food wastewater showed 58.9% level compared to unprocessed one in crystal generation quantity in this study. The experiment provided insight that grease is one of the important causes of scale formation. Additionally, pre-removal of grease from food wastewater did not show negative effect on digestion gas production, as 68.7 L-gas/kg-COD for grease-removed food wastewater and 67.7 L-gas/kg-COD for unprocessed one.

Available Technology and Integrated Management Plan for Energy-positive in the Sewage Treatment Plant (에너지 생산형 하수처리장을 위한 가용 기술과 통합관리 방안)

  • Song, Minsu;Kim, Hyoungho;Bae, Hyokwan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.1
    • /
    • pp.55-68
    • /
    • 2020
  • Because of the intensified environmental problems such as climate change and resource depletion, sewage treatment technology focused on energy management has recently attracted attention. The conversion of primary sludge from the primary sedimentation tank and excessive sludge from the secondary sedimentation tank into biogas is the key to energy-positive sewage treatment. In particular, the primary sedimentation tanks recover enriched biodegradable organic matter and anaerobic digestion process produces methane from the organic wastes for energy production. Such technologies for minimizing oxygen demand are leading the innovation regarding sewage treatment plants. However, sewage treatment facilities in Korea lack core technology and operational know-how. Actually, the energy potential of sewage is higher than sewage treatment energy consumption in the sewage treatment, but current processes are not adequately efficient in energy recovery. To improve this, it is possible to apply chemically enhanced primary treatment (CEPT), high-rate activated sludge (HRAS), and anaerobic membrane bioreactor (AnMBR) to the primary sedimentation tank. To maximize the methane production of sewage treatment plants, organic wastes such as food waste and livestock manure can be digested. Additionally, mechanical pretreatment, thermal hydrolysis, and chemical pretreatment would enhance the methane conversion of organic waste. Power generation systems based on internal combustion engines are susceptible to heat source losses, requiring breakthrough energy conversion systems such as fuel cells. To realize the energy positive sewage treatment plant, primary organic matter recovery from sewage, biogas pretreatment, and co-digestion should be optimized in the energy management system based on the knowledge-based operation.