• Title/Summary/Keyword: Bioethanol production

Search Result 172, Processing Time 0.03 seconds

Enzymatic Hydrolysate from Non-pretreated Biomass of Yellow Poplar (Liriodendron tulipifera) is an Alternative Resource for Bioethanol Production

  • Jung, Ji-Young;Choi, Myung-Suk;Kim, Ji-Su;Jeong, Mi-Jin;Kim, Young-Wun;Woon, Byeng-Tae;Yeo, Jin-Ki;Shin, Han-Na;Goo, Young-Bon;Ryu, Keun-Ok;Karigar, Chandrakant S.;Yang, Jae-Kyung
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.5
    • /
    • pp.744-749
    • /
    • 2010
  • Enzymatic hydrolysate from non pre-treated biomass of yellow poplar (Liriodendron tulipifera) was prepared and used as resource for bioethanol production. Fresh branch (1 year old) of yellow poplar biomass was found to be a good resource for achieving high saccharification yields and bioethanol production. Chemical composition of yellow poplar varied significantly depending upon age of tree. Cellulose content in fresh branch and log (12 years old) of yellow poplar was 44.7 and 46.7% respectively. Enzymatic hydrolysis of raw biomass was carried out with commercial enzymes. Fresh branch of yellow poplar hydrolyzed more easily than log of yellow poplar tree. After 72 h of enzyme treatment the glucose concentration from Fresh branch of yellow poplar was 1.46 g/L and for the same treatment period log of yellow poplar produced 1.23 g/L of glucose. Saccharomyces cerevisiae KCTC 7296 fermented the enzyme hydrolysate to ethanol, however ethanol production was similar (~1.4 g/L) from both fresh branch and log yellow poplar hydrolysates after 96 h.

A review on thermochemical pretreatment in Lignocellulosic bioethanol production (목질계 바이오에탄올 제조공정에서 열화학적 전처리에 관한 고찰)

  • Ko, Jae-Jung;Yun, Sang-Leen;Kang, Sung-Won;Kim, Seog-Ku
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.1
    • /
    • pp.79-88
    • /
    • 2008
  • The production of bioethanol, which is one of the alternative fuel, cause the various problem such as agflation in human society. As a substitute for the feedstock, lignocellulosic biomass have a big potential. However, bioethanol production with cellulosic material is not commercialized due to high cost. Thermochemical pretreatment to improve the rate of enzyme hydrolysis and increase the recovery of fermentable sugar, is required in order to achieve the cost down in bioethanol production. In this study, various problems and technologies for pretreatment is introduced. Acid hydrolysis, alkali hydrolysis, steam explosion, organosolv process, ammonia explosion, and wet oxidation pretreatment remove lignin and hemicellulose, and reduce cellulose crystallinity. Optimization of pretreatment process on various sources of lignocellulosic biomass such as softwood, hardwood, and straw should be performed.

  • PDF

Plant Biomass Degradation and Bioethanol Production Using Hyperthermophilic Bacterium Caldicellulosiruptor bescii (고온성 세균 Caldicellulosiruptor bescii를 이용한 식물성 바이오매스의 분해와 바이오에탄올의 생산)

  • Lee, Han-Seung
    • Journal of Life Science
    • /
    • v.25 no.12
    • /
    • pp.1450-1457
    • /
    • 2015
  • To overcome the depletion of fossil fuels and environmental problems in future, the research and production of biofuels have attracted attention largely. Thermophilic microorganisms produce effective and robust enzymes which can hydrolyze plant biomass and survive under harsh bioprocessing conditions. Caldicellulosiruptor bescii, which can degrade unpretreated plants and grow on them, is the one of the best candidates for consolidated bioprocessing (CBP). C. bescii can hydrolyze pectin efficiently as well as the major plant cell wall components, cellulose and hemicelluloses. Many glycosyl hydrolases and carbohydrate lyases with multidomain structure play an important role in plant biomass decomposition. Recently genetic tools for metabolic engineering of C. bescii have developed and bioethanol production from unpretreated biomass is achieved in C. bescii. Here, we review the recent studies for biomass degradation by C. bescii and bioethanol production in C. bescii in order to provide information about metabolic engineering of themophilic bacteria and biofuel development.

Bioethanol Production using a Yeast Pichia stipitis from the Hydrolysate of Ulva pertusa Kjellman (효모 Pichia stipitis를 이용한 구멍갈파래 가수분해 추출물로 부터 바이오 에탄올 생산)

  • Lee, Ji-Eun;Lee, Sang-Eun;Choi, Woon-Yong;Kang, Do-Hyung;Lee, Hyeon-Yong;Jung, Kyung-Hwan
    • The Korean Journal of Mycology
    • /
    • v.39 no.3
    • /
    • pp.243-248
    • /
    • 2011
  • We studied the repeated-batch process for the bioethanol production from the hydrolysate of Ulva pertusa Kjellman using yeast Pichia stipitis, which is able to assimilate C6- and C5-monosaccharides. During 180-hour operations, the repeated-batch process was carried out stably, and the average bioethanol concentration reached 11.9 g/L from about 30 g/L of reducing sugar in the hydrolysate. Meanwhile, the bioethanol yields, based on the reducing sugar and the quantitative TLC analysis, were 0.40 and 0.37, respectively, which corresponded to 78.4% and 72.5% of theoretical value, respectively. Throughout the quantitative process analysis, it was also demonstrated that 39.67 g-bioethanol could be produced from 1 kg of dried Ulva pertusa Kjellman. In this study, we verified that the bioethanol production from the hydrolysate of Ulva pertusa Kjellman was feasible using a yeast Pichia stipitis, particularly during the repeated-batch operation.

Candida tropicalis Isolated from Tuak, a North Sumatera- Indonesian Traditional Beverage, for Bioethanol Production

  • Hermansyah, Hermansyah;Novia, Novia;Minetaka, Sugiyama;Satoshi, Harashima
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.3
    • /
    • pp.241-248
    • /
    • 2015
  • Tuak is a traditional alcoholic beverage, one of the most widely known in the North Sumateran region of Indonesia. It is produced by a spontaneous fermentation process through the application of one or more several kinds of wood bark or root, called raru (Xylocorpus wood bark or a variety of forest mangosteen), into the sap water of sugar palm (Arenga pinnata) for 2−3 days. In this research, yeast that are potentially useful for ethanol production was isolated from Tuak and identified. Based on analysis of D1/D2 domain sequence of LSU (large subunit) rRNA genes, those isolated yeast strains, HT4, HT5, and HT10 were identified as Candida tropicalis. Fermentation test of these C. tropicalis isolates displayed an ability to produce 6.55% (v/v) and 4.58% ethanol at 30℃ and 42℃, respectively. These results indicated C. tropicalis isolates more rapidly utilize glucose and obtain higher levels of the production of ethanol at the higher temperature of 42℃ than S. cerevisiae, a common yeast used for bioethanol fermentation.

Bioethanol production using batch reactor from foodwastes (회분식 반응기에서 음식물쓰레기를 이용한 바이오에탄올 생산)

  • Lee, Jun-Cheol;Kim, Jae-Hyung;Park, Hong-Sun;Pak, Dae-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.6
    • /
    • pp.609-614
    • /
    • 2010
  • In the present study, bioethanol was produced using batch style reactor from food wastes which has organic characteristics. Pretreatment was required to reduce its particle size and produce fermentable sugar. Two different enzymes such as carbohydrase and gulcoamylase were tested for saccharification of food waste. The efficiency of carbohydrase saccharification (0.63 g/g-TS) has shown higher than glucoamylase saccharification(0.42 g/g-TS). Saccharomyces cerevisiae produced bioethanol via separate hydrolysis & fermentation (SHF) method and simultaneous saccharification fermentation (SSF) method. The production amount of bioethanol was 0.27 g/$L{\cdot}hr$ for SHF and 0.44 g/$L{\cdot}hr$ for SSF.

Bioethanol Production Using Lignocellulosic Biomass - review Part I. Pretreatments of biomass for generating ethanol

  • Sheikh, Mominul Islam;Kim, Chul-Hwan;Yesmin, Shabina;Lee, Ji-Yong;Kim, Gyeong-Chul;Ahn, Byeong-Il;Kim, Sung-Ho;Park, Hyeon-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.5
    • /
    • pp.1-14
    • /
    • 2010
  • Bio-ethanol is a promising alternative energy source for reducing both consumption of crude oil and environmental pollution from renewable resources like lignocellulosic biomass such as wood, forest residuals, agricultural leftovers and urban wastes. Based on current technologies, the cost of ethanol production from lignocellulosic materials is relatively high, and the main challenges are the low yield and high cost of the hydrolysis process. Development of more efficient pretreatment technology (physical, chemical, physico-chemical, and biological pretreatment), integration of several microbiological conversions into fewer reactors, and increasing ethanol production capacity may decrease specific investment for ethanol producing plants. The purpose of pretreatment of lignocellulosic material is to improve the accessible surface area of cellulose for hydrolytic enzymes and enhance the conversion of cellulose to glucose and finally high yield ethanol production which is economic and environmental friendly.

Evaluation of Bioethanol Productivity from Sorghum × Sudangrass Hybrid for Cellulosic Feedstocks (셀룰로오스계 원료작물로서 수수-수단그래스 교잡종의 바이오에탄올 생산량 평가)

  • Cha, Young-Lok;Moon, Youn-Ho;Koo, Bon-Cheol;Ahn, Jong-Woong;Yoon, Young Mi;Nam, Sang-Sik;Kim, Jung Kon;An, Gi Hong;Park, Kwang-Geun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.1
    • /
    • pp.71-77
    • /
    • 2013
  • The world demand of renewable bioenergy as an alternative transportation fuel is greatly increasing. Research for bioethanol production is currently being progressed intensively throughout the world. Therefore it will be necessary to develop bioethanol production with cellulosic materials. In this study, the yield of ethanol production was evaluated by simultaneous saccharification and fermentation (SSF) using sodium hydroxide pretreated sorghum ${\times}$ sudangrass hybrids. Composition analysis of 11 varieties of sorghum ${\times}$ sudangrass hybrids was performed for selection of excellent variety to efficiently produce bioethanol. The content of cellulose, hemicellulose, lignin and ash of these varieties were 32~39%, 19~24%, 17~22% and 6~11%, respectively. Among these varieties, 4 varieties of sorghum ${\times}$ sudangrass hybrids were selected for the evaluation of ethanol yield and those were pretreated with 1 M NaOH solution at $150^{\circ}C$ for 30 min using high temperature explosion system. After pretreatment, samples were neutralized with tap water. It contained 52~57% of cellulose. Simultaneous saccharification and fermentation (SSF) was carried out for 48 h at $33^{\circ}C$ by Saccharomyces cerevisiae CHY1011 using Green star variety. The yield of ethanol was 92.4% and the amount of ethanol production was estimated at 6206 L/ha.

A Review of Biofuels Production Technologies from Microalgae (미세조류 유래 바이오연료 생산 기술에 관한 고찰)

  • PARK, JOYONG;KIM, JAE-KON;PARK, CHEUNKYU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.386-403
    • /
    • 2016
  • Biofuels produced from biomass can be substituted for petroleum fuels due to GHG reduction, sustainability and environmental friendly. The process technologies that convert biomass into biofuels are varied and depend on the feedstocks. Microalgae are considered to be one of the most promising alternative source to the conventional feedstocks for biofuel. Microalgae can be converted to biodiesel, bioethanol, biogas and biojet fuel via thermolchemical and biochemical production technologies. This reviews discusses recent advance in understanding the effects of the characteristics of various processes on the production of biofuels using microalgae. The performances of microalgae based biofuel are compared.

Efficient Extraction of Bioethanol from Freshwater Cyanobacteria Using Supercritical Fluid Pretreatment

  • Pyo, Dongjin;Kim, Taemin;Yoo, Jisun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.379-383
    • /
    • 2013
  • For the production of ethanol from freshwater cyanobacteria, a new pretreatment method using supercritical fluid was introduced. In this study, it was found that the supercritical fluid could penetrate inside the cell wall and help to liberate starch from cyanobacterial cells which resulted in the increase of the efficiency of ethanol production. For Microcystis aeruginosa, supercritical fluid pretreatment increased the amount of ethanol produced from cyanobacteria from 1.53 g/L to 2.66 g/L. For Anabaena variabilis, the amount of ethanol was increased from 1.25 g/L to 2.28 g/L. With use of supercritical fluid pretreatment, the efficiency of the process to obtain higher ethanol yields from freshwater cyanobacteria was improved upto 80%. The optimum temperature and pressure conditions for supercritical fluid pretreatment were determined as the temperature of $40^{\circ}C$ and the pressure of 120 atm. This study demonstrates the feasibility of using supercritical fluid pretreatment for ethanol production using freshwater cyanobacteria.