Browse > Article
http://dx.doi.org/10.4014/mbl.1506.06002

Candida tropicalis Isolated from Tuak, a North Sumatera- Indonesian Traditional Beverage, for Bioethanol Production  

Hermansyah, Hermansyah (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sriwijaya University)
Novia, Novia (Department of Chemical Engineering, Faculty of Engineering, Sriwijaya University)
Minetaka, Sugiyama (Department of Biotechnology, Graduate School of Engineering, Osaka University)
Satoshi, Harashima (Department of Biotechnology, Graduate School of Engineering, Osaka University)
Publication Information
Microbiology and Biotechnology Letters / v.43, no.3, 2015 , pp. 241-248 More about this Journal
Abstract
Tuak is a traditional alcoholic beverage, one of the most widely known in the North Sumateran region of Indonesia. It is produced by a spontaneous fermentation process through the application of one or more several kinds of wood bark or root, called raru (Xylocorpus wood bark or a variety of forest mangosteen), into the sap water of sugar palm (Arenga pinnata) for 2−3 days. In this research, yeast that are potentially useful for ethanol production was isolated from Tuak and identified. Based on analysis of D1/D2 domain sequence of LSU (large subunit) rRNA genes, those isolated yeast strains, HT4, HT5, and HT10 were identified as Candida tropicalis. Fermentation test of these C. tropicalis isolates displayed an ability to produce 6.55% (v/v) and 4.58% ethanol at 30℃ and 42℃, respectively. These results indicated C. tropicalis isolates more rapidly utilize glucose and obtain higher levels of the production of ethanol at the higher temperature of 42℃ than S. cerevisiae, a common yeast used for bioethanol fermentation.
Keywords
Yeast; Candida tropicalis; tuak; bioethanol;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wisselink HW, Toirkens MJ, del Rosario Franco Berriel M, Winkler AA, van Dijken JP, Pronk JT, et al. 2007. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose. Appl. Environ. Microbiol. 73: 4881−4891.   DOI
2 Kurtzman CP, Robnett CJ. 1997. Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5' end of the large-subunit (26S) ribosomal DNA gene. J. Clin. Microbiol. 35: 1216-1223.
3 Lorliam W, Akaracharanya A, Suzuki M, Ohkuma M, Tanasupawat S. 2013. Diversity and fermentation products of xyloseutilizing yeasts isolated from buffalo feces in Thailand. Microbes. Environ. 28: 354−360.   DOI
4 Madhavan A, Srivastava A, Kondo A, Bisaria VS. (2011). Bioconversion of lignocelluloses-derived sugars to ethanol by engineered Saccharomyces cerevisiae, Crit. Rev. Biotechnol. 32: 22−48.
5 Makimura K, Murayama SY, Yamaguchi H. 1994. Detection of a wide range of medically important fungi by the polymerase chain reaction. J. Med. Microbiol. 40: 358−364.   DOI
6 Nevoigt E. 2008. Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 72: 379−412.   DOI
7 Olofsson K, Bertilsson M, Liden G. 2008. A short review on SSF-an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol. Biofuels. 1: 7.   DOI
8 Rao RS, Bhadra B, Shivaji S. 2008. Isolation and characterization of ethanol-producing yeasts from fruits and tree barks. Lett. Appl. Microbiol. 47: 19−24.   DOI
9 Stanley D, Fraser S, Chambers PJ, Roger P, Stanley GA. 2010. Generation and characterization of stable ethanol-tolerant mutants of Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 37: 139−149.   DOI
10 Takashima M, Van BH, Deuk An K, Ohkuma M. 2011. Dioszegia rishiriensis sp. nov., a novel yeast species from soil collected on Rishiri island, Hokkaido, Japan. Int. J. Syst. Evol. Microbiol. 61: 1736−1739.   DOI
11 Bettiga M, Hahn-Hagerdal B, Gorwa-Grauslund MF. 2008. Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains. Biotechnol. Biofuels 1: 16.   DOI
12 Cardona CA, Sanchez OJ. 2007. Review : Fuel ethanol production: process design trends and integration opportunities. Bioresour. Technol. 98: 2115−2457.
13 Dien BS, Kurtzman CP, Sahal BC, Bothast RJ. 1996. Screening for L-Arabinose fermenting yeast. Appl. Biochem. Biotechnol. 57/58: 233−242.   DOI
14 Dogan A, Demirci S, Aytekin AO, Sahin F. 2014. Improvements of tolerance to stress conditions by genetic engineering in Saccharomyces cerevisiae during ethanol production. Appl. Biochem. Biotechnol. 174: 28−42.   DOI
15 Ge YP, Wang L, Lu GX, Shen YN, Liu WD. 2012. A simple and reliable PCR-restriction fragment length polymorphism assay to identify Candida albicans and its closely related Candida dubliniensis, Braz. J. Microbiol. 43: 873−879.   DOI
16 Benjaphokee S, Hasegawa D, Yokota D, Asvarak T, Auesukaree C, Sugiyama M, et al. 2012. Highly efficient bioethanol production by a Saccharomyces cerevisiae strain with multiple stree tolerance to high temperature, acid and ethanol. N Biotechnol. 29: 379−386.   DOI
17 Jamai L, Ettayebi K, El Yamani J, Ettayebi M. 2007. Production of ethanol from starch by free and immobilized Candida tropicalis in the presence of amylase. Bioresour. Technol. 98: 2765−2770.   DOI
18 Jeffries. 1981. Conversion of xylose to ethanol under aerobic conditions by Candida tropicalis. Biotechnol. Lett. 3: 213−218.   DOI
19 Karhumaa K, Wiedemann B, Hann-Hagerdal B, Boles E, Gorwa-Grauslund MF. 2006. Co-utilization of L-arabinose and D-xylose by laboratory and industrial Saccharomyces cerevisiae strains. Microbial Cell Factories. 5-18: 2859-5-18.
20 Benjaphokee S, Koedrith P, Auesukaree C, Asvarak T, Sugiyama M, Kaneko Y, et al. 2012. CDC19 encoding pyruvate kinase is important for high-tempearture tolerance in Saccharomyces cerevisiae. N. Biotechnol. 29: 166−176.   DOI