• Title/Summary/Keyword: Bioenergy crop

Search Result 227, Processing Time 0.024 seconds

Biosorption of Methylene Blue from Aqueous Solution Using Xanthoceras sorbifolia Seed Coat Pretreated by Steam Explosion

  • Yao, Zeng-Yu;Qi, Jian-Hua
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.3
    • /
    • pp.253-261
    • /
    • 2016
  • Xanthoceras sorbifolia seed coat (XSSC) is a processing residue of the bioenergy crop. This work aimed to evaluate the applicability of using the steam explosion to modify the residue for dye biosorption from aqueous solutions by using methylene blue as a model cationic dye. Equilibrium, kinetic and thermodynamic parameters for the biosorption of methylene blue on the steam-exploded XSSC (SE-XSSC) were evaluated. The kinetic data followed the pseudo-second-order model, and the rate-limiting step was the chemical adsorption. Intraparticle diffusion was one of the rate-controlling factors. The equilibrium data agreed well with the Langmuir isotherm, and the biosorption was favorable. The steam-explosion pretreatment strongly affected the biosorption in some respects. It reduced the adsorption rate constant and the initial sorption rate of the pseudo-second-order model. It enhanced the adsorption capacity of methylene blue at higher temperatures while reduced the capacity at lower ones. It changed the biosorption from an exothermic process driven by both the enthalpy and the entropy to an endothermic one driven by entropy only. It increased the surface area and decreased the pH point of zero charge of the biomass. Compared with the native XSSC, SE-XSSC is preferable to MB biosorption from warmer dye effluents.

Fractionation with acetone or hexane to reduce the saturation level of lard (아세톤 또는 헥산을 이용한 분별조건에 따른 돈지의 포화도 저감화 연구)

  • Lee, Koo;Lee, Kyoung-Su;Shin, Jung-Ah;Lee, Yong-Hwa;Lee, Ki-Teak
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.3
    • /
    • pp.377-386
    • /
    • 2012
  • To reduce the saturation level of lard, solvent fractionation with hexane and acetone was carried out. The fatty acid compositions of lard were 1.5% myristic acid, 26.0% palmitic acid, 2.2%, palmitoleic acid, 12.1% stearic acid, 44.7% oleic acid, and 12.7% linoleic acid. Lard was fractionated by various conditions such as different fractionation temperatures (-15, 5, 10, $15^{\circ}C$), solvent ratios (1:1, 1:3, 1:5, 1:10, lard : solvent, w/v), and fractionation time (3, 6, 24 hr). At $-15^{\circ}C$, acetone was better for reducing the content (11.2%) of saturated fatty acids (SFA) than hexane (10.8%) when the 1:5 solvent ratio was used at 24 hr. Triacylglycerol (TAG) profiles were analyzed by reversed-phase high performance liquid chromatography based on the partition number (PN) of TAG molecules. The PN of major TAG species in lard were 46 (24.4%), 48 (55.7%), and 50 (19.9%). However, after fractionation (1:5, $5^{\circ}C$ and 24 hr), TAG species with a PN of 46 (34.2%), 48 (54.4%), and 50 (6.9%) were major components in acetone-fractionated lard (liquid part), while TAG species with a PN of 46 (26.0%), 48 (50.3%), and 50 (19.0%) were in hexane-fractionated lard, suggesting that fractionation with acetone resulted in maximal reduction of saturation level in lard.

Monitoring Biota in Giant Miscanthus Fields (거대억새 재배단지 조성에 따른 생물상 모니터링)

  • Kang, Ku;Hong, Seong-Gu;Ji, Kwang-Jae;Choi, June-Yeol;Lee, Hyo-HyeMi;Kim, Han-Joong;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.1
    • /
    • pp.89-99
    • /
    • 2014
  • The cultivation of biomass crops is now global demand for decreasing emissions of carbon dioxide ($CO_2$) from fossil fuel. Miscanthus species have been studied as a suitable crop for biomass production, due to its characteristics of fast growth and high biomass. In Korea, Miscanthus species have gained wide attention as an option for biomass production alternative to fossil fuels, recently. New strain of giant Miscanthus has been developed and two large trial sites for the giant Miscanthus production were built in the lower reaches of the Geum River. To evaluate the ecological influence of the giant Miscanthus as an bioenergy crop for the future, we investigated the impact of the construction of the giant Miscanthus production fields on the biota and also compared it with biota in paddy fields near the study sites. The biota including plants, amphibians, reptiles, mammals, avifauna, insects, and bugs was investigated. The plant diversity of the giant Miscanthus production fields was poorer than the paddy fields because the high height of the giant Miscanthus might hinder the growth of other plants. However, the giant Miscanthus production fields serves habitat to animals, leading to rich diversity of animals including avifauna, insects, and bugs. The rich diversity of the animals in the giant Miscanthus production fields coincides with the fact that the giant Miscanthus was grown without any pesticide, herbicide, and fertilizer. This study showed that the giant Miscanthus can influence on biota and further long term study is needed to elucidate the interaction between the diversity of biota and the giant Miscanthus.

Contents of low molecular weight antioxidants in the leaves of different sweetpotato cultivars at harvest (고구마 품종별 수확시기 잎의 저분자항산화물질 함량분석)

  • Ahn, Young-Ock;Kim, Sun-Ha;Lee, Haeng-Soon;Lee, Joon-Seol;Ma, Daifu;Kwak, Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.36 no.3
    • /
    • pp.214-218
    • /
    • 2009
  • Sweetpotato [Ipomoea batatas (L.) Lam] leaves are excellent source of low molecular weight antioxidants such as polyphenols, anthocyanins and carotenoids compared to other leafy vegetables. Endogenous antioxidants in sweetpotato help our bodies to prevent ageing, heart diseases and cancer. In this study, to develop the proper cultivars for the functional feed materials, we investigated the contents of anthocyanin, $\beta$-carotene, and polyphenols as well as DPPH radical scavenging activity in leaves of 14 different cultivars at the time of the harvest. They showed a diverse antioxidation activity. In DPPH radical scavenging activity, cultivars of Nanjing 9, Yulmi and Shinzami showed higher activity, whereas cv. Huiza 6 showed the lowest. Cultivars of Shinzami and Shinhwangmi had the highest anthocyanin (3.5 mg/g fr wt) and polyphenol (15.8 mg/g fr wt) content, respectively. Interestingly, there was a high correlation between cultivars with colorful pigments in storage roots and antioxidants activity in leaves. These results suggest that sweetpotato leaves with high antioxidant activity at harvest would be suitable for functional feed materials.

Phylogenetics and Gene Structure Dynamics of Polygalacturonase Genes in Aspergillus and Neurospora crassa

  • Hong, Jin-Sung;Ryu, Ki-Hyun;Kwon, Soon-Jae;Kim, Jin-Won;Kim, Kwang-Soo;Park, Kyong-Cheul
    • The Plant Pathology Journal
    • /
    • v.29 no.3
    • /
    • pp.234-241
    • /
    • 2013
  • Polygalacturonase (PG) gene is a typical gene family present in eukaryotes. Forty-nine PGs were mined from the genomes of Neurospora crassa and five Aspergillus species. The PGs were classified into 3 clades such as clade 1 for rhamno-PGs, clade 2 for exo-PGs and clade 3 for exo- and endo-PGs, which were further grouped into 13 sub-clades based on the polypeptide sequence similarity. In gene structure analysis, a total of 124 introns were present in 44 genes and five genes lacked introns to give an average of 2.5 introns per gene. Intron phase distribution was 64.5% for phase 0, 21.8% for phase 1, and 13.7% for phase 2, respectively. The introns varied in their sequences and their lengths ranged from 20 bp to 424 bp with an average of 65.9 bp, which is approximately half the size of introns in other fungal genes. There were 29 homologous intron blocks and 26 of those were sub-clade specific. Intron losses were counted in 18 introns in which no obvious phase preference for intron loss was observed. Eighteen introns were placed at novel positions, which is considerably higher than those of plant PGs. In an evolutionary sense both intron loss and gain must have taken place for shaping the current PGs in these fungi. Together with the small intron size, low conservation of homologous intron blocks and higher number of novel introns, PGs of fungal species seem to have recently undergone highly dynamic evolution.

Kinetic Responses of Soil Carbon Dioxide Emission to Increasing Urea Application Rate

  • Lee, Sun-Il;Lim, Sang-Sun;Lee, Kwang-Seung;Kwak, Jin-Hyeob;Jung, Jae-Woon;Ro, Hee-Myoung;Choi, Woo-Jung
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.2
    • /
    • pp.99-104
    • /
    • 2011
  • BACKGROUND: Application of urea may increase $CO_2$ emission from soils due both to $CO_2$ generation from urea hydrolysis and fertilizer-induced decomposition of soil organic carbon (SOC). The objective of this study was to investigate the effects of increasing urea application on $CO_2$ emission from soil and mineralization kinetics of indigenous SOC. METHODS AND RESULTS: Emission of $CO_2$ from a soil amended with four different rates (0, 175, 350, and 700 mg N/kg soil) of urea was investigated in a laboratory incubation experiment for 110 days. Cumulative $CO_2$ emission ($C_{cum}$) was linearly increased with urea application rate due primarily to the contribution of urea-C through hydrolysis to total $CO_2$ emission. First-order kinetics parameters ($C_0$, mineralizable SOC pool size; k, mineralization rate) became greater with increasing urea application rate; $C_0$ increased from 665.1 to 780.3 mg C/kg and k from 0.024 to 0.069 $day^{-1}$, determinately showing fertilizer-induced SOC mineralization. The relationship of $C_0$ (non-linear) and k (linear) with urea-N application rate revealed different responses of $C_0$ and k to increasing rate of fertilizer N. CONCLUSION(s): The relationship of mineralizable SOC pool size and mineralization rate with urea-N application rate suggested that increasing N fertilization may accelerate decomposition of readily decomposable SOC; however, it may not always stimulate decomposition of non-readily decomposable SOC that is protected from microbial decomposition.

Biomass Energy in the USA: A Literature Review (III) - Bioethanol production from Biomass and Feedstock Supply - (미국 에너지 시장에 공급되는 바이오에너지에 관한 연구 (III) - 바이오매스를 이용한 에탄올 생산과 원료공급에 대하여 -)

  • Kim, Yeong-Suk;Gorman, Thomas
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • This study was reviewed on the bioethanol production from biomass resources and feedstock supply in America. U.S. Department of Energy (USDE) and the u.s. Department of Agriculture USDA) are both strongly committed to expand the role of biomass as an energy source. They support biomass fuels and products as a way to reduce the need for oil and gas imports, to strengthen the nation's energy security and environmental quality. And it was envisioned a 20 percent replacement of the current U.S.transportation fuel consumption in 2030. Also it was reviewed policies to encourage the expanding of Bio-based fuel use to replace gasoline, such as Clean Air Act, Federal Clean Fuel Program and American Jobs Creation Act. In feedstock supply it was assumed forest biomass will be supplied in 368 million dry tons yearly and the agriculture derived biomass adopted by new technologies and land use change will be supplied in 998 million dry tons, including highly 818 million dry tons of lignocellulosic biomass such as perenial crops (hybrid trees, grasses) corn stover, other crop residues. This amount is 5 times to the amount from based current agricultural technology and crop land.

Effectiveness on the Inoculation of Arbuscular Mycorrhizal Fungi in Cutting of Grapevine (포도 삽목에서 내생 균근균 접종효과)

  • Wee, Chi-Do;An, Gi-Hong;Kim, Hong-Lim;Sohn, Bo-Kyoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.1002-1007
    • /
    • 2010
  • The study was performed to investigate the influence on growth and development of grape-cuttings by arbuscular mycorrhizal (AM) fungi inoculation, AM colonization rate, and the phenomena of mycorrhizal association. Among the grape-cuttings, 'Kyoho' and 'Tamnara' cultivars inoculated with AM fungi showed significantly increase of leaf area, leaf number, total root length and root surface area than non-infected ones. But 'Cambell Early' did not showed any significant difference in total root length and root surface area even after the inoculation. The AM colonization rates in mycorrhizal inoculation treatment were 22.5-32.5% in total average after 8weeks, and were 29.6%, 28.8%, and 48.8% for 'Cambell Early', 'Tamnara', and 'Kyoho' respectively after 12weeks. The AM colonization rate marked very low level in non-colonization control plot.

In Vitro and In Vivo Inhibitory Effects of Gaseous Chlorine Dioxide Against Diaporthe batatas Isolated from Stored Sweetpotato

  • Lee, Ye Ji;Jeong, Jin-Ju;Jin, Hyunjung;Kim, Wook;Yu, Gyeong-Dan;Kim, Ki Deok
    • The Plant Pathology Journal
    • /
    • v.35 no.1
    • /
    • pp.77-83
    • /
    • 2019
  • Chlorine dioxide ($ClO_2$) can be used as an alternative disinfectant for controlling fungal contamination during postharvest storage. In this study, we tested the in vitro and in vivo inhibitory effects of gaseous $ClO_2$ against Diaporthe batatas SP-d1, the causal agent of sweetpotato dry rot. In in vitro tests, spore suspensions of SP-d1 spread on acidified potato dextrose agar were treated with various $ClO_2$ concentrations (1-20 ppm) for 0-60 min. Fungal growth was significantly inhibited at 1 ppm of $ClO_2$ treatment for 30 min, and completely inhibited at 20 ppm. In in vivo tests, spore suspensions were drop-inoculated onto sweetpotato slices, followed by $ClO_2$ treatment with different concentrations and durations. Lesion diameters were not significantly different between the tested $ClO_2$ concentrations; however, lesion diameters significantly decreased upon increasing the exposure time. Similarly, fungal populations decreased at the tested $ClO_2$ concentrations over time. However, the sliced tissue itself hardened after 60-min $ClO_2$ treatments, especially at 20 ppm of $ClO_2$. When sweetpotato roots were dip-inoculated in spore suspensions for 10 min prior to treatment with 20 and 40 ppm of $ClO_2$ for 0-60 min, fungal populations decreased with increasing $ClO_2$ concentrations. Taken together, these results showed that gaseous $ClO_2$ could significantly inhibit D. batatas growth and dry rot development in sweetpotato. Overall, gaseous $ClO_2$ could be used to control this fungal disease during the postharvest storage of sweetpotato.

Quality Properties of Makgeolli Brewed with Korean Sweet Potato Cultivars (Ipomoea batatas (L.) Lam) (한국 고구마 품종을 발효하여 만든 막걸리의 품질 특성)

  • Yoon, Hyang-Sik;Kang, Hye Jeong;Eom, Hyun-Ju;Jeong, Heon Sang;Chung, Mi-Nam;Kim, In Jae;Kim, Youngho
    • The Korean Journal of Food And Nutrition
    • /
    • v.33 no.6
    • /
    • pp.624-630
    • /
    • 2020
  • This study examined the quality characteristics of Makgeolli to investigate the availability of Korean sweet potato cultivars as alcoholic beverages. The following sweet potato varieties were used: Gogunmi, Daeyumi, Shingunmi, Shinyulmi, Shincheonmi, Jinyulmi, Jinhongmi, Jeungmi and Pungwonmi; their alcohol contents ranged from 12.20% to 14.20%, with the lowest value in Makgeolli made with Jeungmi and the highest value in Makgeolli made with Jinhongmi. The DPPH radical scavenging activity was in the range of 37.51~77.02%, with the lowest value in Makgeolli made with rice (control) and the highest value in Makgeolli made with Gogunmi. As a result of analyzing the aroma component of sweet potato Makgeolli, 27 kinds of aroma components were detected, and six kinds of alcohols, 13 kinds of esters, four kinds of acids, and four kinds of other compounds were found. Regarding the number of aroma compounds, Makgeolli made with Shinyulmi showed the lowest number with 14 kinds, while Makgeolli made with Pungwonmi showed the highest number with 27 kinds.