Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.10.2012.0157

Phylogenetics and Gene Structure Dynamics of Polygalacturonase Genes in Aspergillus and Neurospora crassa  

Hong, Jin-Sung (Department of Horticultural, Biotechnology and Landscape Architecture, Seoul Women's University)
Ryu, Ki-Hyun (Department of Horticultural, Biotechnology and Landscape Architecture, Seoul Women's University)
Kwon, Soon-Jae (US Department of Agriculture-Agricultural Research Service, Western Regional Plant Introduction Station, 59 Johnson Hall, Washington State University)
Kim, Jin-Won (Department of Environment Horticulture, University of Seoul)
Kim, Kwang-Soo (Bioenergy Crop Research Center, National Institute of Crop Science, Rural Development Administration)
Park, Kyong-Cheul (Institute of Biosciences and Biotechnology, Kangwon National University)
Publication Information
The Plant Pathology Journal / v.29, no.3, 2013 , pp. 234-241 More about this Journal
Abstract
Polygalacturonase (PG) gene is a typical gene family present in eukaryotes. Forty-nine PGs were mined from the genomes of Neurospora crassa and five Aspergillus species. The PGs were classified into 3 clades such as clade 1 for rhamno-PGs, clade 2 for exo-PGs and clade 3 for exo- and endo-PGs, which were further grouped into 13 sub-clades based on the polypeptide sequence similarity. In gene structure analysis, a total of 124 introns were present in 44 genes and five genes lacked introns to give an average of 2.5 introns per gene. Intron phase distribution was 64.5% for phase 0, 21.8% for phase 1, and 13.7% for phase 2, respectively. The introns varied in their sequences and their lengths ranged from 20 bp to 424 bp with an average of 65.9 bp, which is approximately half the size of introns in other fungal genes. There were 29 homologous intron blocks and 26 of those were sub-clade specific. Intron losses were counted in 18 introns in which no obvious phase preference for intron loss was observed. Eighteen introns were placed at novel positions, which is considerably higher than those of plant PGs. In an evolutionary sense both intron loss and gain must have taken place for shaping the current PGs in these fungi. Together with the small intron size, low conservation of homologous intron blocks and higher number of novel introns, PGs of fungal species seem to have recently undergone highly dynamic evolution.
Keywords
Aspergillus; gene structure; intron loss/gain; intron phase; Neuorospora; polygalacturonase;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abe, K., Gomi, K., Hasegawa, F. and Machida, M. 2006. Impact of Aspergillus oryzae genomics on industrial production of metabolites. Mycopathologia 162:143-153.   DOI
2 Achaz, G., Netter, P. and Coissac, E. 2001. Study of intrachromosomal duplications among the eukaryote genomes. Mol. Biol. Evol. 18:2280-2288.   DOI   ScienceOn
3 Allen, R. L. and Lonsdale, D. M. 1992. Sequence analysis of three members of the maize polygalacturonase gene family expressed during pollen development. Plant Mol. Biol. 20:343-345.   DOI
4 Bon, E., Casaregola, S., Blandin, G., Llorente, B., Neuveglise, C., Munsterkotter, M., Guldener, U., Mewes, H. W., Van Helden, J. and Dujon, B. 2003. Molecular evolution of eukaryotic genomes: hemiascomycetous yeast spliceosomal introns. Nucleic. Acids Res. 31:1121-1135.   DOI   ScienceOn
5 Castillo-Davis, C. I., Mekhedov, S. L., Hartl, D. L., Koonin, E. V. and Kondrashov, F. A. 2002. Selection for short introns in highly expressed genes. Nat. Genet. 31:415-418.   DOI
6 Chapman, B. A., Bowers, J. E., Schulze, S. R. and Paterson, A. H. 2004. A comparative phylogenetic approach for dating whole genome duplication events. Vol. 20, pp. 180-185, Oxford Univ. Press. UK.
7 Coppin, E., Debuchy, R., Arnaise, S. and Picard, M. 1997. Mating types and sexual development in filamentous ascomycetes. Micro. Mol. Biol. Rev. 61:411-428.
8 Deng, J., Carbone, I. and Dean, R. A. 2007. The evolutionary history of cytochrome P450 genes in four filamentous Ascomycetes. BMC Evol. Biol. 7:30.   DOI   ScienceOn
9 Denning, D. W. 1998. Invasive aspergillosis. Clin. Infect. Dis. 26: 781-803.   DOI   ScienceOn
10 de Souza, S. J. 2003. The emergence of a synthetic theory of intron evolution. Genetica 118:117-121.   DOI   ScienceOn
11 Doolittle, W. F. 1978. Genes in pieces: were they ever together. Nature 272:581-582.   DOI
12 Fedorov, A., Merican, A. F. and Gilbert, W. 2002. Large-scale comparison of intron positions among animal, plant, and fungal genes. Proc. Nat. Acad. Sci. USA 99:16128-16133.   DOI   ScienceOn
13 Fedorov, A., Suboch, G., Bujakov, M. and Fedorova, L. 1992. Analysis of nonuniformity in intron phase distribution. Nucleic Acids Res. 20:2553-2557.   DOI   ScienceOn
14 Galagan, J. E., Calvo, S. E., Borkovich, K. A., Selker, E. U., Read, N. D., Jaffe, D., et al. 2003. The genome of the filamentous fungus Neurospora crassa. Nature 24:859-868.
15 Galagan, J. E., Calvo, S. E., Cuomo, C., Ma, L. J., Wortman, J. R., Batzoglou, S., Lee, S. I., Bastuerkmen, M., Spevak, C. C. and Clutterbuck, J. 2005a. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438:1105-1115.   DOI   ScienceOn
16 Galagan, J. E., Henn, M. R., Ma, L. J., Cuomo, C. A. and Birren, B. 2005b. Genomics of the fungal kingdom: Insights into eukaryotic biology. Genome Res. 15:1620-1631.   DOI   ScienceOn
17 Machida, M., Asai, K., Sano, M., Tanaka, T., Kumagai, T., Terai, G., Kusumoto, K. I., Arima, T., Akita, O. and Kashiwagi, Y. 2005. Genome sequencing and analysis of Aspergillus oryzae. Nature 438:1157-1161.   DOI   ScienceOn
18 Long, M., Rosenberg, C. and Gilbert, W. 1995. Intron phase correlations and the evolution of the intron/exon structure of genes. Proc. Nat. Acad Sci. USA 92:12495-12499.   DOI
19 Lynch, M. and Conery, J. S. 2000. The evolutionary fate and consequences of duplicate genes. Science 290:1151-1155.   DOI   ScienceOn
20 Lynch, M. and Richardson, A. O. 2002. The evolution of spliceosomal introns. Curr. Opin. Genet. Dev. 12:701-710.   DOI   ScienceOn
21 Markovic, O. and Janecek, S. 2001. Pectin degrading glycoside hydrolases of family 28: sequence-structural features, specificities and evolution. Protein Eng. 14:615-631.   DOI
22 Martinez, D., Larrondo, L. F., Putnam, N., Gelpke, M. D. S., Huang, K., Chapman, J., Helfenbein, K. G., Ramaiya, P., Detter, J. C. and Larimer, F. 2004. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP 78. Nat. Biotechnol. 22:695-700.   DOI   ScienceOn
23 Mourier, T. and Jeffares, D. C. 2003. Eukaryotic intron loss. Science 300:1393-1393.   DOI   ScienceOn
24 Nierman, W. C., Pain, A., Anderson, M. J., Wortman, J. R., Kim, H. S., Arroyo, J., Berriman, M., Abe, K., Archer, D. B. and Bermejo, C. 2005. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438:1151-1156.   DOI   ScienceOn
25 Padovan, A. C. B., Sanson, G. F. O., Brunstein, A. and Briones, M. R. S. 2005. Fungi evolution revisited: application of the penalized likelihood method to a Bayesian fungal phylogeny provides a new perspective on phylogenetic relationships and divergence dates of Ascomycota groups. J. Mol. Evol. 60:726-735.   DOI
26 Payne, G. A., Nierman, W. C., Wortman, J. R., Pritchard, B. L., Brown, D., Dean, R. A., Bhatnagar, D., Cleveland, T. E., Machida, M. and Yu, J. 2006. Whole genome comparison of Aspergillus flavus and A. oryzae. Med. Mycol. 44:9-11.   DOI   ScienceOn
27 Palmer, J. D. and Logsdon, Jr, J. M. 1991. The recent origins of introns. Curr. Opin. Genet. Dev. 1:470-477.   DOI   ScienceOn
28 Park, K. C., Kwon, S. J., Kim, P. H., Bureau, T. and Kim, N. S. 2008. Gene structure dynamics and divergence of the polygalacturonase gene family of plants and fungus. Genome 51:30-40.   DOI   ScienceOn
29 Parsch, J. 2003. Selective constraints on intron evolution in Drosophila. Genetics 165:1843-1851.
30 Pontecorvo, G., Roper, J. A., Hemmons, L. M., Macdonald, K. D. and Bufton, A. W. 1953. The genetics of Aspergillus nidulans. Adv. Genet. 5:141-238.   DOI
31 Prince, V. E. and Pickett, F. B. 2002. Splitting pairs: the diverging fates of duplicated genes. Nat. Rev. Genet. 3:827-837.   DOI   ScienceOn
32 Roy, S. W. 2003. Recent evidence for the exon theory of genes. Genetica 118:251-266.   DOI   ScienceOn
33 Roy, S. W. 2004. The origin of recent introns: transposons. Genome Biol. 5:251.   DOI
34 Stoltzfus, A., Logsdon, Jr, J. M., Palmer, J. D. and Doolittle, W. F. 1997. Intron "sliding" and the diversity of intron positions. Proc. Nat. Acad. Sci. USA 94:10739.   DOI
35 Sverdlov, A. V., Csuros, M., Rogozin, I. B. and Koonin, E. V. 2007. A glimpse of a putative pre-intron phase of eukaryotic evolution. Trends Genet. 23:105-108.   DOI   ScienceOn
36 Timberlake, W. E. and Marshall, M. A. 1989. Genetic engineering of filamentous fungi. Science 244:1313-1317.   DOI
37 Yokoyama, R. and Nishitani, K. 2004. Genomic basis for cellwall diversity in plants. A comparative approach to gene families in rice and Arabidopsis. Plant Cell Physiol. 45:1111-1121.   DOI   ScienceOn
38 Torki, M., Mandaron, P., Mache, R. and Falconet, D. 2000. Characterization of a ubiquitous expressed gene family encoding polygalacturonase in Arabidopsis thaliana. Gene 242:427-436.   DOI   ScienceOn
39 Wolfe, K. H. and Shields, D. C. 1997. Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708-713.   DOI   ScienceOn
40 Wortman, J. R., Fedorova, N., Crabtree, J., Joardar, V., Maiti, R., Haas, B. J., Amedeo, P., Lee, E., Angiuoli, S. V. and Jiang, B. 2006. Whole genome comparison of the A. fumigatus family. Med. Mycol. 44:3-7.   DOI   ScienceOn
41 Yu, J., Yang, Z., Kibukawa, M., Paddock, M., Passey, D. A. and Wong, G. K. S. 2002. Minimal introns are not "Junk". Genome Res. 12:1185-1189.   DOI   ScienceOn
42 Hadfield, K. A. and Bennett, A. B. 1998. Polygalacturonases:many genes in search of a function. Plant Physiol. 117:337-343.   DOI   ScienceOn
43 Jones, M. G. 2007. The first filamentous fungal genome sequences: Aspergillus leads the way for essential everyday resources or dusty museum specimens- Microbiology 153:1.   DOI   ScienceOn
44 Gilbert, W. 1978. Why genes in pieces. Nature 271:501.   DOI   ScienceOn
45 Horan, K., Lauricha, J., Bailey-Serres, J., Raikhel, N. and Girke, T. 2005. Focus issue on plant databases genome cluster database. a sequence family analysis platform for arabidopsis and rice. Plant Physiol. 138:47-54.   DOI   ScienceOn
46 Hynes, M. J. 2003. The Neurospora crassa genome opens up the world of filamentous fungi. Genome Biol. 4:217.   DOI
47 Kellis, M., Birren, B. W. and Lander, E. S. 2004. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428:617-624.   DOI   ScienceOn
48 Kim, J., Shiu, S. H., Thoma, S., Li, W. H. and Patterson, S. E. 2006. Patterns of expansion and expression divergence in the plant polygalacturonase gene family. Genome Biol. 7:R87.   DOI
49 Lees-Miller, J. P., Goodwin, L. O. and Helfman, D. M. 1990. Three novel brain tropomyosin isoforms are expressed from the rat alpha-tropomyosin gene through the use of alternative promoters and alternative RNA processing. Mol. Cell. Biol. 10: 1729-1742.   DOI
50 Lespinet, O., Wolf, Y. I., Koonin, E. V. and Aravind, L. 2002. The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res. 12:1048.   DOI   ScienceOn
51 Li, W. H., Gu, Z., Wang, H. and Nekrutenko, A. 2001. Evolutionary analyses of the human genome. Nature 409:847-849.   DOI   ScienceOn
52 Long, M., de Souza, S. J., Rosenberg, C. and Gilbert, W. 1998. Relationship between proto-splice sites and intron phase: evidence from dicodon analysis. Proc. Nat. Acad. Sci. USA 95:219-223.   DOI