• 제목/요약/키워드: Biodegradable plate

검색결과 30건 처리시간 0.033초

비주 버팀목으로 흡수성 고정판을 이용한 비첨 성형술 (Tip Plasty using Biodegradable Plate as a Columella Strut)

  • 김수영;이수향;황은아;최현곤;김순흠;신동혁;엄기일
    • Archives of Plastic Surgery
    • /
    • 제37권3호
    • /
    • pp.259-264
    • /
    • 2010
  • Purpose: Most surgeons have used autogenous cartilage for columella strut graft. But the supply of autogenous cartilage is often limited. So, this study is to investigate the usefulness of biodegradable plate as columella strut material. Methods: We studied 19 patients who have secondary cleft nasal deformity. Patients were divided into two groups. Group A patients who were not closed their growth plate underwent columella strut graft only with biodegradable plate through endonasal approach. The biodegradable plate was inserted between nasal tip and anterior nasal spine. Group B patients were closed their growth plate. They had an operation for columella strut graft with biodegradable plate fixed with autogenous conchal cartilage. If nasal tip projection was insufficient, we performed additionally onlay graft on nasal tip with autogenous soft tissue or remnant cartilage. Results: As a result of mean 14 months follow-up, we achieved a good nasal tip projection, narrowing of interalar distance and symmetrical nostril shape. No specific complications were reported except 2 cases, which were the extrusion of biodegradable plate into the nasal cavity and Staphylococcus aureus infection. Conclusion: The columella strut graft using biodegradable plate is simple and effective method. Biodegradable plate can be a good substitute for columella strut in patients who can not use autogenous cartilages.

생체흡수성 재료를 이용한 하악골절 치료의 결과 (The Result of Mandible Fracture Fixations with Biodegradable Materials)

  • 왕재권;은석찬;허찬영;백롱민;민경원
    • 대한두개안면성형외과학회지
    • /
    • 제9권2호
    • /
    • pp.45-50
    • /
    • 2008
  • Purpose: Traditionally, titanium miniplate has been used for rigid fixation of mandible fractures. However, the limitations of metal plate have been reported such as hypersensitivity, interference with the cranio-facial growth of growing child, secondary bone resorption around the plate, foreign body reaction, declination of primary callus formation, and bone atrophy, and so forth. Recently, biodegradable miniplate has been introduced and used as an alternative to the metal plate despite of its lower strength. This study evaluated the usefulness and stability of biodegradable plate and screw for treatment of mandible fractures. Methods: In this study, 61 patients(92 areas) diagnosed as mandible fracture in the last 2 years have been reviewed. We used titanium plate and screw in 32 patients, and biodegradable plate and screw($INION^{(R)}$) in 29 patients. Stability of plates and screws, bony healing process and its side effects were observed by clinical and radiographic assessment. Results: In the titanium material group, one of malocclusion, two of mouth opening limitation, three of pain, three of palpation were shown. The plate of six patients involved in these complications were removed. In the biodegradable group, two of mouth opening limitation, two of pain, one of localized wound infection were shown and one plate was removed secondarily. Conclusion: There was no statistical difference between two groups in bony healing and complication rates. Biodegradable implants show efficient stability during initial bone healing and low side effects in long-term follow up periods.

Biomechanical Analysis of Biodegradable Cervical Plates Developed for Anterior Cervical Discectomy and Fusion

  • Cho, Pyung Goo;Ji, Gyu Yeul;Park, Sang Hyuk;Shin, Dong Ah
    • Asian Spine Journal
    • /
    • 제12권6호
    • /
    • pp.1092-1099
    • /
    • 2018
  • Study Design: In-vitro biomechanical investigation. Purpose: To evaluate the biomechanical effects of the degeneration of the biodegradable cervical plates developed for anterior cervical discectomy and fusion (ACDF) on fusion and adjacent levels. Overview of Literature: Biodegradable implants have been recently introduced for cervical spine surgery. However, their effectiveness and safety remains unclear. Methods: A linear three-dimensional finite element (FE) model of the lower cervical spine, comprising the C4-C6 vertebrae was developed using computed tomography images of a 46-year-old woman. The model was validated by comparison with previous reports. Four models of ACDF were analyzed and compared: (1) a titanium plate and bone block (Tita), (2) strong biodegradable plate and bone block (PLA-4G) that represents the early state of the biodegradable plate with full strength, (3) weak biodegradable plate and bone block (PLA-1G) that represents the late state of the biodegradable plate with decreased strength, and (4) stand-alone bone block (Bloc). FE analysis was performed to investigate the relative motion and intervertebral disc stress at the surgical (C5-C6 segment) and adjacent (C4-C5 segment) levels. Results: The Tita and PLA-4G models were superior to the other models in terms of higher segment stiffness, smaller relative motion, and lower bone stress at the surgical level. However, the maximal von Mises stress at the intervertebral disc at the adjacent level was significantly higher in the Tita and PLA-4G models than in the other models. The relative motion at the adjacent level was significantly lower in the PLA-1G and Bloc models than in the other models. Conclusions: The use of biodegradable plates will enhance spinal fusion in the initial stronger period and prevent adjacent segment degeneration in the later, weaker period.

Monocortical Osteosynthesis 이론에 따른 하악골 우각부 골절 수술시 Titanium miniplate와 Biodegradable miniplate의 임상적, 방사선학적 비교 연구 (CLINICAL AND RADIOLOGICAL COMPARISON BETWEEN TITANIUM AND BIODEGRADABLE MINIPLATE MONOCORTICAL OSTEOSYNTHESIS IN MANDIBULAR ANGLE FRACTURES)

  • 최은주;남웅;정영수;김기호;김형준
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제32권3호
    • /
    • pp.222-225
    • /
    • 2006
  • The treatment objective of mandibular fracture is a return to normal function. According to Champy, a rigid fixation of mandibular angle fracture is performed by using 4 or 6 holes titanium miniplates on the external oblique ridge of mandible. However, the limitations of metal plate such as hypersensitivity, interference with the cranio-facial growth of growing child, secondary bone resorption around the plate, foreign body reaction, declination of primary callus formation, and bone atrophy due to the lack of normal stress reaction of the bone have been reported. Recently, biodegradable miniplate has been introduced and used as an alternative to the metal plate despite its lower strength than that of the titanium plate and the side effect caused by the resorption in the body. In this study, 61 patients diagnosed as mandibular angle fracture and treated from Jan. 1998 to Dec. 2004 in our department have been reviewed. Metal plate fixation was used in 50 patients and biodegradable plate fixation in 11 patients on the external oblique ridge around the fractured mandibular angle according to the principle of monocortical osteosynthesis by Champy. We compared the incidence of side effects and the degree of bony union at the mandibular inferior border in two different fixation methods. In conclusion, we have found that one miniplate regardless of matter could provide enough strength to grasp bony fragments of the tension site and compress the inferior border of mandible without any complications.

하악각 골절의 치료 방법에 따른 하악골의 응력 분포 및 변위에 관한 삼차원 유한요소법적 연구 (THE THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION AND DISPLACEMENT IN MANDIBLE ACCORDING TO TREATMENT MODALITIES OF MANDIBULAR ANGLE FRACTURES)

  • 구제훈;김일규;장재원;양정은;사시카라 바라라만;왕붕
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제32권3호
    • /
    • pp.207-217
    • /
    • 2010
  • The purpose of this study was to evaluate the effects of the stress distribution and displacement in mandible according to treatment modalities of mandibular angle fractures, using a three dimensional finite element analysis. A mechanical model of an edentulous mandible was generated from 3D scan. A 100-N axial load and four masticatory muscular supporting system were applied to this model. According to the number, location and materials of titanium and biodegradable polymer plates, the experimental groups were divided into five types. Type I had a single titanium plate in the superior border of mandibular angle, type II had two titanium plates in the superior tension border and in the inferior compression border of mandibular angle, type III had a single titanium plate in the ventral area of mandibular angle, type IV had a single biodegradable polymer plate in the superior border of mandibular angle, type V had a single biodegradable polymer plate in the ventral area of mandibular angle. The results obtained from this study were follows: 1. Stress was concentrated on the condylar neck of the fractured side except Type III. 2. The values of von-Mises stress of the screws were the highest in the just-posterior screw of the fracture line, and in the just-anterior screw of Type III. 3. The displacement of mandible in Type III was 0.04 mm, and in Type I, II, IV, and V were 0.10 mm. 4. The plates were the most stable in the ventral area of mandibular angle (Type III, V). In conclusion, the ventral area of mandibular angle is the most stable location in the fixation of mandibular angle fractures, and the just- posterior and/or the just-anterior screws of the fracture line must be longer than the other, and surgeons have to fix accurately these screws, and the biodegradable polymer plate also was suitable for the treatment of mandible angle fracture.

Fabrication and characterization of PCL/TCP-coated PHBV composite multilayer as a bone plate

  • Kim, Yang-Hee;Song, Ho-Yeon;Lee, Byong-Taek
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.39.2-39.2
    • /
    • 2009
  • In this work, Poly($\varepsilon$-Caprolactone)(PCL) andpoly(3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV) mats were fabricated usingelectrospinning process. The electrospinning process is a simple and efficient method to fabricate the nanofibrous mats. PCL and PHBV is a kind of biodegradable polymer but their mechanical properties aren't good. For improving mechanical properties, PHBV mats were coated by TCP. Using PCL mats and TCP-coated PHBV composite mats, a bio-resorbablebone plate were made by pressing. Detailed micro-structural characterization was done by SEM techniques. Tensile strength and bending strength were also evaluated for mechanical properties. The cytotoxicity evaluation ofPCL/TCP-coated PHBV composite multilayer was done by MTT assay. The evidence obtained in this work implies the potential for use as a biodegradable boneplate.

  • PDF

턱교정 수술에 있어 흡수성 고정판 및 나사 사용에 대한 임상적 연구 (CLINICAL STUDY ON USE OF BIODEGRADABLE PLATE AND SCREW IN ORTHOGNATHIC SURGERY)

  • 박성수;최진영
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제31권2호
    • /
    • pp.127-135
    • /
    • 2009
  • Objectives : The titanium fixation system has been used in orthognathic surgery for fixation of bone segments usually, but the biodegradable fixation system was developed and also being used. The strongest point in the biodegradable system is that no extra operation should be needed to remove fixation materials. In spite of this merit, oral & maxillofacial surgeons hesitate to use this system in fracture or orthognathic surgery. In this study, as we got some clinical experiences, we'd like to report the result of clinical study using the biodegradable fixation system in orthognathic surgery. Patients and Methods : A total of 35 patients composed of 17 males and 18 females with 25 osteotomies in maxilla and 34 osteotomies in mandible were fixated with the biodegradable fixation system(Inion $CPS^{(R)}$). We investigated methods of stabilization, fixation time, and complications on the basis of the method as above. Results : Four 2mm thick L shaped plates with 7 holes of which 1 hole was removed were fixed in maxilla with six $2.0{\times}7mm$ screws. Three $2.5{\times}16{\sim}18mm$ screws were used to fix superior ramus area and one mandibular angle area in mandible. It took about 27.4 minutes in maxilla, 25.3 minutes in mandible to perform the fixation which took longer time than the titanium system(9.5 minutes in maxilla, 8 minutes in mandible). Generally, there was no problem except 9 cases in which there were some complications. Conclusions : In most cases, the biodegradable fixation system can be used without problem in usual orthognathic surgery. But, this system is inferior to the titanium fixation one in some respects such as fixation time, size, and physical property. Some supplementations for such weak points as aforementioned should be needed for the universal use of biodegradable materials.

하악골 골절 치료시 생체 흡수성 고정판 사용: 증례 보고 및 문헌고찰 (RESORBABLE PLATES FOR THE FIXATION OF MANDIBULAR FRACTURES: CASE REPORTS AND REVIEW OF THE LITERATURE)

  • 유지색;김수관;김학균;문성용
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제30권2호
    • /
    • pp.182-190
    • /
    • 2008
  • 본 증례에서는 자기강화 흡수성 고정판을 사용하여 하악골 골절을 정복하였다. 하악각 부위와 정중부, 부정중부, 하악지 부위의 골절이 발생하여 직경 2.0mm의 4-hole plate와 직경 2.4mm의 6-hole plate를 1개 혹은 2개를 사용하였다. 발생한 합병증에는 4명의 환자에 있어서 감각저하 이외에는 어떠한 합병증도 관찰되지 않았다. 본 연구의 추적 조사 기간이 너무 짧고 환자 수가 너무 적어 생체 흡수성 고정판을 사용한 골절 정복의 장기간의 효과를 결정할 수 없지만 하악골 골절의 초기 골 치유를 가능하게 하는 적절한 견고성과 안정성을 보여주었다.

Absorbable Plate-Related Infection after Facial Bone Fracture Reduction

  • Choi, Seung Hyup;Lee, Jang Hyun
    • 대한두개안면성형외과학회지
    • /
    • 제17권1호
    • /
    • pp.1-4
    • /
    • 2016
  • Absorbable plates are used widely for fixation of facial bone fractures. Compared to conventional titanium plating systems, absorbable plates have many favorable traits. They are not palpable after plate absorption, which obviates the need for plate removal. Absorbable plate-related infections are relatively uncommon at less than 5% of patients undergoing fixation of facial bone fractures. The plates are made from a mixture of poly-L-lactic acid and poly-DL-lactic acid or poly-DL-lactic acid and polyglycolic acid, and the ratio of these biodegradable polymers is used to control the longevity of the plates. Degradation rate of absorbable plate is closely related to the chance of infection. Low degradation is associated with increased accumulation of plate debris, which in turn can increase the chance of infection. Predisposing factors for absorbable plate-related infection include the presence of maxillary sinusitis, plate proximity to incision site, and use of tobacco and significant amount of alcohol. Using short screws in fixating maxillary fracture accompanied maxillary sinusitis will increase the rate of infection. Avoiding fixating plates near the incision site will also minimize infection. Close observation until complete absorption of the plate is crucial, especially those who are smokers or heavy alcoholics. The management of plate infection is varied depending on the clinical situation. Severe infections require plate removal. Wound culture and radiologic exam are essential in treatment planning.

흡수성 차폐막에 배양된 구개관세포의 증식양상의 비교 (Comparison of the Proliferation pattern of Cultured Rat Calvaria Cell on the Resorbable Barrier Membrane)

  • 이창훈;이만섭;권영혁;박준봉;허익
    • Journal of Periodontal and Implant Science
    • /
    • 제33권2호
    • /
    • pp.193-213
    • /
    • 2003
  • The purpose of this study is to evaluate the phenomenon of attachment and spreading of the cultured rat calvarial cell inoculated on their surface of different kinds of biodegradable membrane which had been used on tissue regeneration on periodontal defects by using scanning electron microscope. In this experiment 30 Sprague-Dawley male rats (mean BW 150gm) were used to harvest abundant number of cell in the short period. The rats were sacrificed by decapitatioan to obtain the calvaria for bone cell culture. Calvarial cells were cultured with Dulbecco's Modified Essential Medium contained with 10% Fetal Bovine Serum under the conventional conditions. Biodegradable barrier membrane were collected with collagen type, and were divided into 3 different kind of surface such as scattered, polarized and fine-net type as their surface texture. Microcover plate which usually used for cell culture was used as control for smooth surface. All the membrane were seeded with cultured calvarial cell on their surface. The number of cell inoculated on the membrane were $1{\times}10^6$ Cells/ml. After the culture as designed time, all the membrane were washed with 0.1 M Phosphate Buffered saline and fuxed with 2.5% Glutaraldehyde. And all specimen were treated with $OsO_4$, and Tannic acid before drying the cell for coating the cell with gold. Scanning Electron Microscope was used to observation. The following results were obtained. I. During the whole period of experiment, the phenomenon of cell attachment and spreading were revealed similar pattern to compare with smooth surface culture plate and ordinary culture dish. 2. The shape of cell attachment and spreading on the surface of barrier membrane were observed no remarked difference pattern between smooth surface culture plate and ordinary culture dish. 3. The cytoplasmic process of cultured calvaria cell extent to the deep portion of barrier membrane like as their own proper shape. 4. There were no remarkable relationships between the degree of cultured cell spreading and surface structure of barrier membrane. 5. Slight starified layer of cultured calvaria cell were observed on the scattered type of resorbable membrane, Conclusively, this study thus suggest that cultured bone cell inoculated onto the biodegradable barrier membrane may have an important role of carrier for many cell which could be used as new tissue regeneration, and those tissue engeering technique may become an new method in the approach to the repair of bone defects.