• Title/Summary/Keyword: Biodegradable Resin

Search Result 44, Processing Time 0.027 seconds

Development and physical properties on the monofilament for gill nets and traps using biodegradable aliphatic polybutylene succinate resin (생분해성 지방족 폴리부틸렌 석시네이트 수지를 이용한 자망과 통발용 단일섬유의 방사기술 개발 및 물리적 특성)

  • Park, Seong-Wook;Bae, Jae-Hyun;Lim, Ji-Hyun;Cha, Bong-Jin;Park, Chang-Doo;Yang, Yong-Su;Ahn, Heui-Chun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.43 no.4
    • /
    • pp.281-290
    • /
    • 2007
  • This study was aimed not only to develop the gill net and trap made of biodegradable monofilaments in order to prevent a ghost fishing and to protect marine ecosystem, but also to analyze their spinning process and physical properties. Results showed that the spinning speed of biodegradable polybutylene succinate(PBS) monofilament was estimated to be approximately 100m/min when spinning temperature and cooling water temperature were adjusted at $180^{\circ}C$ and $3^{\circ}C$, respectively. The breaking loads of PBS monofilaments were estimated to be $35.3kg/mm^2$ at ${\phi}0.2mm$, $46.5kg/mm^2$ at ${\phi}0.3mm$, and $49.7kg/mm^2$ at ${\phi}0.4mm$ in the dry condition, respectively. However, its breaking loads in the wet condition were reduced by 2.4-5.5%, compared to those in the dry condition. The knotted strength of PBS monofilament at ${\phi}0.2mm$ was estimated to be 98.6% of PE in the dry condition. The breaking load of PBS monofilament at ${\phi}0.3mm$ was evaluated to be 81.8% of PA, and its softness showed 3 times less than that of PA in the wet condition. The breaking load of PBS monofilament at ${\phi}0.4mm$ was 95.3% of PA, and its softness showed 1.6 times less than that of PA in the wet state. However, the load elastic elongations of two kinds of monofilaments were estimated to be 1% higher than that of PA.

Fiber Loading Effect on the Interlaminar, Mechanical, and Thermal Properties of Novel Lyocell/Poly(butylene succinate) Biocomposites (새로운 라이오셀/poly(butylene succinate) 바이오복합재료의 층간전단, 기계적, 열적 특성에 미치는 섬유함량의 영향)

  • Lee, Jae Young;Kim, Jin Myung;Cho, Donghwan;Park, Jong Kyoo
    • Journal of Adhesion and Interface
    • /
    • v.10 no.2
    • /
    • pp.106-112
    • /
    • 2009
  • In the present work, novel biocomposites made with biodegradable Lyocell woven fabrics and poly (butylene succinate) were successfully fabricated for the first time. Lyocell/poly(butylene succinate) biocomposites with different fiber loadings of 0, 30, 40, 50 and 60 wt% were prepared by compression molding with a sheet interleaving manner. The effect of Lyocell fabric loading on the interlaminar shear strength, tensile and flexural properties, heat deflection temperature, thermal expansion behavior, and thermal stability of the biocomposites was investigated. The properties strongly depended on the fabric loading and the results were consistent with each other. It was demonstrated that the Lyocell fabrics played a remarkable role in improving the properties of poly(butylene succinate) resin by incorporating the fabrics into the resin. The greatest inter-laminar, tensile, flexural and thermal properties of the biocomposites were obtained with Lyocell fabrics of 50% by weight.

  • PDF

A Study on The Optimization of Pre-treatment for the Brine Wastewater from the Epoxy-resin Process by the Coagulation and Sedimentation Reactions (에폭시수지 생산 공정에서 발생되는 brine 폐수의 전처리를 위한 응집 및 침전 반응의 최적화 연구)

  • Cho, Wook Sang;Lee, Eun Young;Kang, Seong Wook;Lee, Jang Su;Jin, Su Ik
    • Clean Technology
    • /
    • v.11 no.2
    • /
    • pp.57-67
    • /
    • 2005
  • Epoxy resins are produced by the dehydro condensated reaction with ECH (Epichlorohydrin) and BPA(Bisphenol-A) as raw reactants under sodium hydroxide(NaOH) as a catalyst, and from this reaction, salted water named of brine, which contains ECH derivatives in condition of emulsion as likely as glycidol and polymer resins, is produced as an undesired side product. This brine water is alkaline wastewater and causes process fouling problems by plugging and chemically depositing polymer particles on the surface of inner wall of reactors and pipes, and decreases the biodegradable efficiency in the wastewater process. In this study, the optimization of coagulation and sediment reactions, using inorganic and organic polymer coagulants, were performed to remove the causes occurring the process fouling phenomena. And also, based on this study, the methodologies applicable to the commercial processes including economical analysis were presented.

  • PDF

Green Composites. I. Physical Properties of Ramie Fibers for Environment-friendly Green Composites

  • Nam Sung-Hyun;Netravali Anil N.
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.372-379
    • /
    • 2006
  • The surface topography, tensile properties, and thermal properties of ramie fibers were investigated as reinforcement for fully biodegradable and environmental-friendly 'green' composites. SEM micrographs of a longitudinal and cross sectional view of a single ramie fiber showed a fibrillar structure and rough surface with irregular cross-section, which is considered to provide good interfacial adhesion with polymer resin in composites. An average tensile strength, Young's modulus, and fracture strain of ramie fibers were measured to be 627 MPa, 31.8 GPa, and 2.7 %, respectively. The specific tensile properties of the ramie fiber calculated per unit density were found to be comparable to those of E-glass fibers. Ramie fibers exhibited good thermal stability after aging up to $160^{\circ}C$ with no decrease in tensile strength or Young's modulus. However, at temperatures higher than $160^{\circ}C$ the tensile strength decreased significantly and its fracture behavior was also affected. The moisture content of the ramie fiber was 9.9 %. These properties make ramie fibers suitable as reinforcement for 'green' composites. Also, the green composites can be fabricated at temperatures up to $160^{\circ}C$ without reducing the fiber properties.

Characterization and Release Behavior of Polymersomes of PEG-Poly(fumaric-sebacic acids)-PEG Triblock Copolymer in Aqueous Solution (PEG-Poly(fumaric-sebacic acids)-PEG 삼중 블록 공중합체로 수용액에서 만들어진 폴리머솜의 분석과 방출특성)

  • Pourhosseini, Pouneh S.;Saboury, Ali A.;Najafi, Farhood;Divsalar, Adeleh;Sarbolouki, Mohammad N.
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.294-301
    • /
    • 2013
  • Polymersomes made of biodegradable triblock copolymers based on poly(fumaric acid-co-sebacoyl chloride)/PEG (PEG-co-P(FA/SC)-co-PEG) were prepared and studied in aqueous solutions. TEM confirmed the formation of vesicles in aqueous media. Aggregation behavior of the copolymers was studied by fluorescence spectroscopy of 8-anilino-1-naphthalenesulfonic acid, and the critical aggregation concentration (c.a.c.) of the copolymer was found to be ${\sim}26.2{\mu}M$ indicating desirable stability of the vesicles. Dynamic light scattering revealed that the size of the vesicles was distributed within the range of 170-270 nm. Turbidity measurements confirmed the relative short-term stability of the polymersomes. Carboxyfluorescein, a hydrophilic compound, was simply encapsulated in the vesicles during polymersome preparation. The release of encapsulant from the polymersomes at 25 and $37^{\circ}C$ lasted about 3 weeks, and the rate of release followed a first-order kinetics. The release is speculated to be primarily carried out through diffusion. These results confirm that these polymersomes are promising as controlled-release carriers of various drugs.

Characterization of jute fibre reinforced pine rosin modified soy protein isolate green composites

  • Sakhare, Karishma M.;Borkar, Shashikant P.
    • Advances in materials Research
    • /
    • v.11 no.3
    • /
    • pp.191-209
    • /
    • 2022
  • Very slow degradation of synthetic based polymers has created a severe environmental issue that increased awareness towards research in polymers of biodegradable property. Soy protein isolate (SPI) is a natural biopolymer used as matrix in green composites but it has limitations of low mechanical properties and high water sensitivity. To enhance mechanical properties and reduce water sensitivity of Jute-SPI composites, SPI was modified with pine rosin which is also a natural cross-linking agent. 30% glycerol on the weight basis of a matrix was used as a plasticizer. The fibre volume fraction was kept constant at 0.2 whereas the pine rosin in SPI ranged from 5% to 30% of the matrix. The effects of pine rosin on mechanical, thermal, water sensitivity and surface morphology have been characterized using various techniques. The mechanical properties and water absorbency were found to be optimum for 15% pine rosin in Jute-SPI composite. Therefore, Jute-SPI composite without pine rosin and with 15% pine rosin were chosen for investigation through characterization by Fourier transforms infrared spectroscopy (FTIR), Thermo-gravimetric analysis (TGA), X-Ray diffraction (XRD) and Scanning electron microscope (SEM). The surface morphology of the composite was influenced by pine rosin which is shown in the SEM image. TGA measurement showed that the thermal properties improved due to the addition of pine rosin. Antimicrobial test showed antimicrobial property in the composite occurring 15% pine rosin. The research paper concludes that the modification of SPI resin with an optimum percentage of pine rosin enhanced mechanical, thermal as well as water-resistant properties of jute fibre reinforced composites.

A Study on Morphology and Mechanical Properties of Biodegradable Polymer Nanocomposites (생분해성 고분자 나노복합체의 형태학 및 기계적 특성 연구)

  • Jang, Sang Hee
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.401-409
    • /
    • 2013
  • BBiodegradable polymers have attracted great attention because of the increased environmental pollution by waste plastics. In this study, PLA (polylactic acid)/Clay-20 (Cloisite 20) and PLA (polylactic acid)/PBS (poly(butylene succinate)/Clay-20 (Cloisite 20) nanocomposites were manufactured in a twin-screw extruder. Specimens for mechanical properties of PLA/Clay-20 and PLA/PBS (90/10)/Clay-20 nanocomposites were prepared by injection molding. Thermal, mechanical, morphological and raman spectral properties of two nanocomposites were investigated by differential scanning calorimetry (DSC), tensile tester, scanning electron microscopy (SEM) and raman-microscope spectrophotometer, respectively. In addition, hydrolytic degradation properties of two nanocomposites were investigated by hydrolytic degradation test. It was confirmed that the crystallinity of PLA/Clay-20 and PLA/PBS/Clay-20 nanocomposite was increased with increasing Clay-20 content and the Clay-20 is miscible with PLA and PLA/PBS resin from DSC and SEM results. Tensile strength of two nanocomposites was decreased, but thier elongation, impact strength, tensile modulus and flexural modulus were increased with an increase of Clay-20 content. The impact strength of PLA/Clay-20 and PLA/PBS/Clay-20 nanocomposites with 5 wt% of Clay-20 content was increased above twice than that of pure PLA and PLA/PBS (90/10). The hydrolytic degradation rate of PLA/Clay-20 nanocomposite with 3 wt% of Clay-20 content was accelerated about twice than that of pure PLA. The reason is that degradation may occur in the PLA and Clay-20 interface easily because of hydrophilic property of organic Clay-20. It was confirmed that a proper amount of Clay-20 can improve the mechanical properties of PLA and can control biodegradable property of PLA.

Evaluation of Water Resistance Properties of Pulp Mold depending on the Types of Raw Materials and the Additives (원료종류 및 첨가제 처리에 따른 펄프몰드의 수분 저항성 평가)

  • Sung, Yong Joo;Kim, Hyung Min;Kim, Dong Sung;Lee, Ji Young
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.5
    • /
    • pp.112-119
    • /
    • 2015
  • The pulp mold attract the increasing concern as recyclable, biodegradable, and eco-friendly packaging materials. In order to broaden the applicability of the pulp mold as substitutes of the expanded styrofoam, the properties of various raw materials for the pulp mold were evaluated and the way for improving water resistance properties of the pulp mold were also tested by applying some additives. The higher value in the fines contents and in the water retention value were shown for the TMP (thermomechanical pulp), which resulted in the bulkier pulp mold with the higher moisture absorption property. In case of water resistance properties, the pulp mold made of white ledger stock showed the higher value in water contact angle and very slow water absorption rate. The addition of oil palm EFB fiber showed the improvement in the water resistance of the pulp mold made of UBKP. The effects of various additives on the improvement in the water resistance properties of the pulp mold were tested by using AKD, PVAm, epoxy resin. The application of AKD leaded to the higher increase in the water resistance. The results in this study showed the effects of AKD for the pulp mold could be improved and optimized by the application with fixing agent and by the ageing treatment after production.

Analysis of Natural Organic Matter (NOM) Characteristics in the Geum River (금강 수계 자연유기물 특성 분석)

  • Yu, Soon-Ju;Kim, Chang-Soo;Ha, Sung-Ryong;Hwang, Jong-Yeon;Chae, Min-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.2
    • /
    • pp.125-131
    • /
    • 2005
  • Natural organic matter(NOM) is defined as the complex matrix of organic material and abundant in natural waters. It affects the performance of unit operations for water purification. Several kinds of analytical indicators such as DOC, specific ultraviolet absorbance(SUVA), apparent molecular weight (AMW), fractionation and high performance size exclusive chromatography(HPSEC) have been used to understand characteristics and variations of NOM. This study aims to evaluate the characteristics of NOM in the Geum River system comprising with stream flows and reservoirs. It was identified that SUVA denoting the portion of humic substance in water ranged within 1.60~3.36. Using resin adsorbents, dissolved organic carbon(DOC) was fractionated into three classes: hydrophobic bases(HOB), hydrophobic acids(HOA) and hydrophilic substances(HI). HI dominates in all samples, collectively accounting for more than 62% of the DOC. HOA was the second dominated fraction and it varied considerably but accounted for about 30% of the DOC. The distribution of high molecular weight(HMW) measured by HPSEC being used to determine the molecular weight distribution of aquatic humic substances was 40.1% and 38.7% in reservoir and stream flow, respectively. The distribution of low molecular weight(LMW) in stream flow was 13.2% higher than that in reservoir. And apparent molecular weight less than 1KDa, which include the molecular weight of hydrophilic organic matter, occupied with 69.2% and 68.2% in stream flow and reservoir, respectively. While the molecular weight of 1 to 100 KDa including humic substances ranged with 18.6% and 21.6% in stream flow and reservoir, respectively. Seasonal variation of refractory dissolved organic carbon was similar to that of SUVA.

Improving Smoothness of Hydrophilic Natural Polymer Coating Layer by Optimizing Composition of Coating Solution and Modifying Chemical Properties of Cobalt-Chrome Stent Surface (코팅 용액의 조성 최적화 및 코발트-크롬 금속스텐트의 화학적 표면개질을 통한 친수성 천연 고분자 코팅층의 표면 거칠기 개선)

  • Kim, Dae Hwan;Kum, Chang Hun
    • Journal of Chitin and Chitosan
    • /
    • v.23 no.4
    • /
    • pp.256-261
    • /
    • 2018
  • Recently, the number of cardiovascular disease-related deaths worldwide has increased. Therefore, the importance of percutaneous cardiovascular intervention and drug-eluting stents (DES) has been highlighted. Despite the great clinical success of DES, the re-endothelialization at the site of stent implantation is retarded owing to the anti-proliferative effect from the coated drug, resulting in late thrombosis or very late restenosis. In order to solve this problem, studies have been actively carried out to excavate new drugs that promote rapid re-endothelialization. In this study, we introduced hydrophilic drug, tauroursodeoxycholate (TUDCA), that improves the proliferation of endothelial progenitor cells and promotes apoptosis of vascular smooth muscle cells. In addition, we utilized shellac, which is a natural resin from lac bug to coat TUDCA on the surface of the metal. When using conventional coating method including biodegradable polymers and organic solvents, phase separation between polymer and drug occurred in the coating layer that caused incomplete incorporation of drug into the polymer layer. However, when using shellac as a coating polymer, no phase separation was observed and drug was fully covered with the polymer matrix. In addition, by adjusting the composition of coating solution and modifying the hydrophilicity of the metal surface using oxygen plasma, the surface roughness decreased due to the increased affinity between coating solution and metal surface. This result provides a method of depositing a hydrophilic drug layer on the stent.