• Title/Summary/Keyword: Biodegradable Film

Search Result 114, Processing Time 0.03 seconds

Biodegradable Film Decomposition Levels and Their Effects on Growth and Yield of Corn Crops

  • Ye Geon Kim;Hyun Hwa Park;Do Jin Lee;Yong In Kuk
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.52-52
    • /
    • 2022
  • Recently, PE (polyethylene) film has been used increasingly in com cultivation. However, PE films often cause soil and environment contamination. In order to reduce this problem, many researches have been carrying out studies on biodegradable films (BF) that are easily decomposed by soil microorganisms. Therefore, this study was conducted to determine which BF is optimal for growth and yield of com crops while also having the highest rates of film decomposition. BFs Farmsbio (Farm Hannong), Heulgro Film (Sejin Bio), Vonto Film (Eco-Hansung) as well as a selected PE film were used in this study. For the control, we used crops grown without any kind of mulching. Experimental fields were fertilized according to conventional cultivation methods, tilled, and then covered by either BF or PE. After 1 week, com (cv. MIBECK2ho) at the 3-leaf stage (16 days after seeding) was transplanted. Plant height was measured at 18 and 32 days after transplanting and heading stages. Yield components and yield were also measured at harvest. In addition, pH, EC, and decomposition and light transmittance levels of films were investigated during the experimental period. Daily average temperature, relative humidity and organic matter in soils were also measured during the experimental period. There was no significant difference in plant height, heading date, and silking between crops with BFs and PE, but the crops grown with BFs and PE films reached higher growth parameters in a shorter amount of time than the crops in the non-mulching control. Additionally, there were no significant differences in yield components such as length of ears, ear width, ear weight, and yield in crops that were grown using films or crops in the control plot. Light transmittance and decomposition levels of films generally increased with time after transplanting, and was highest in the Heulgro film than other BFs. Soil pH and organic matter in crops using BFs and PE films were significantly higher than in the control plot at 99 and 113 days after transplanting. In general, the EC contents in the control plot was lower than in crops using BFs and PE films. The average daily moisture in soil was higher when BFs and PE films were used than in the control plot. However, the daily average soil temperature was higher in crops using BFs and PE films than in the control plots at the beginning of the experimental period, but there was no consistent difference in soil temperature towards the later part of the experimental period. Therefore, the BFs used in this study were shown to be helpful without causing negative impacts on the growth and yield of com.

  • PDF

Effects of processing conditions on tensile properties and color of Alaska Pollack meal protein isolate film (가공조건이 명태어분단백질 필름의 인장강도와 색에 미치는 영향)

  • YOU Byeong-Jin;SHIM Jae-Man
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.5
    • /
    • pp.418-422
    • /
    • 2000
  • The tensile properties and color of fish meal film under various processing conditions were measured to obtain basic data for biodegradable Alaska Pollack meal protein isolate (APMPI) film. The tensile strength and the elongation of APMPI film were increased with casting volume of APMPI solution but those of APMPI film were weakened with the addition of glycerol amount as well as reduction of pH values. In case of adding various plasticizer, the tensile strength of film was increased in order as follows: sorbitol, polyethylene glycol and glycerol. The elongation was increased in order of polyethylene glycol, sorbitol and glycerol. The tensile strength of film increased with increment of APMPI concentration, but the elongation of film was not affected by APMPI concentration. The tensile strength of APMPI film was decreased with the increment of relative humidity but its elongation was increased with the increment of relative humidity, Not only lightness and yellowness of film added with sorbitol but also redness and total different color of film added with polyethylene glycol showed the highest value in Hunter color system.

  • PDF

Modification of Soy Protein Film by Formaldehyde (Formaldehyde 처리에 의한 대두단백 필름의 물성 개선)

  • Rhim, Jong-Whan
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.372-378
    • /
    • 1998
  • Two types of formaldehyde-treated soy protein isolate (SPI) films, formaldehyde-incorporated and formaldehyde-adsorbed films, and control SPI films were prepared. Cross-linking effect of formaldehyde on selected film properties such as color, tensile strength (TS), elongation at break (E), water vapor permeability (WVP), and water solubility (WS) were determined. Physical properties of formaldehyde-incorporated films were not geneally different from those of control films, while almost all of those among formaldehyde-adsorbed films were significantly different. Through cross-linking development within formaldehyde-adsorbed films, WS decreased significantly (P<0.05) from 26.1% to 16.6%, and TS increased two times while E decreased two times compared with control films. This was caused by insolubilization and hardening of protein by cross-linking most likely attributed to the significant changes in properties of protein films reacted with formaldehyde.

  • PDF

Effects of extracting conditions on film properties of seatangle alginate (다시마 Alginate의 추출조건이 alginate 필름의 성질에 미치는 영향)

  • You Byeong-Jin;SHIM Jae-Man;CHANG Mi-Hwa
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.5
    • /
    • pp.664-668
    • /
    • 1999
  • The extracting conditions of alginates from sea tangle were evaluated by measuring water vapor permeability (WVP) and tensile properties of alginate film to obtain basic data of making an edible and biodegradable film. The alginates were extracted with $1\%,\;3\%$ and $5\%$ sodium carbonate ($Na_2CO_3$) for 1, 3, 5 and 10 hours, and the alginate film was made with various plasticizers. The higher concentration of $Na_2CO_3$ solution showed the lower viscosity and polymerization degree of alginate and the film prepared with alginates having low viscosity showed the higher WVP. The extracting hours had little effect on the WVP and the elongation of alginate film, but the polymerization degree of alginates directly affected the tensile strength of the film. The addition of sorbitol and polyethylene glycol as a plasticizer lowered the WVPs and the elongation of alginate film.

  • PDF

Preparation and Characterization of Biomass-based Polymer Blend Films (Biomass-based 고분자 블렌드필름의 제조 및 특성 연구)

  • Lee, Soo;Jin, Seok-Hwan;Lee, Jae-Won
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.95-101
    • /
    • 2012
  • To manufacture of a completely biodegradable and compostable biomass -based blend polymer film, two types of cellulose acetates(DS=2.4 and DS=2.7) were blended with 5 - 50 wt% of low average molecular weight polylactide(PLA) by mixing each polymer solution having same viscosity in 10 wt% methanol/dichloromethane. Their surface morphology, thermal and mechanical properties were studied. The chemical structures of blend films were confirmed by the fourier transform IR spectroscopy with attenuated total reflection(FT-IR ATR) spectrophotometer. Scanning electron microscope(SEM) photos of blend films of both CAs with less than 5 % of PLA showed homogeneous morphology. On the contrary, the other blends with higher than 20 wt% of PLA content showed a large phase separation with spherical domains. The thermal property of blend films was also analyzed with thermogravimetric analysis(TGA) and differential scanning calorimeter(DSC). The tensile strength of CA/PLA blend films was increased up to $820kg_f/cm^2$ for TAC/PLA and $600kg_f/cm^2$ for DAC/PLA.

Effect of Poly(3-hydroxibutyrate-co-3-hydroxivalerate) Surface with Different Wettability on Fibroblast Behavior

  • Lee, Sang-Jin;Lee, Young-Moo;Khang, Gilson;Kim, Un-Young;Lee, Bong;Lee, Hai-Bang
    • Macromolecular Research
    • /
    • v.10 no.3
    • /
    • pp.150-157
    • /
    • 2002
  • Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a microbial storage polymer with biodegradable properties. In order to improve the cell compatibility of PHBV surfaces, the physicochemical treatments have been demonstrated. In this study, physical method was corona discharge treatment and chemical method was chloric acid mixture solution treatment. The physicochemically treated PHBV film surfaces were characterized by the measurement of water contact angle, electron spectroscopy for chemical analysis, and scanning electron microscopy (SEM). The water contact angle of the physicochemically treated PHBV surfaces decreased from 75 to 30~40 degree, increased hydrophilicity. due to the introduction of oxygen-based functional group onto the PHBV backbone chain. The mouse NIH/3T3 fibroblasts cultured onto the physicochemically treated PHBV film surfaces with different wettability. The effect of the PHBV surface with different wettability was determined by SEM as counts of cell number and [$^3$H]thymidine incorporation as measures of cell proliferation. As the surface wettability increased, the number of the cell adhered and proliferated on the surface was increased. The result seems closely related with the serum protein adsorption on the physicochemically treated PHBV surface. In conclusion, this study demonstrated that the surface wettabilily of biodegradable polymer as the PHBV plays an important role for cell adhesion and proliferation behavior for biomedical application.

Effect of Graft Copolymer Composition on the Compatibility of Biodegradable PCL/PCL-g-PEG Blend (PCL/PCL-g-PEG 생분해성 블렌드에서 그래프트 공중합체의 조성에 따른 상용성의 영향)

  • Cho, Kuk-Young;Lee, Ki-Seok;Park, Jung-Ki
    • Polymer(Korea)
    • /
    • v.33 no.3
    • /
    • pp.248-253
    • /
    • 2009
  • Blend films based on the poly($\varepsilon$-caprolactone) (PCL) and amphiphilic biodegradable polymer, poly(ethylene glycol) grafted poly($\varepsilon$-caprolactone) (PCL-g- PEG), were prepared with different blend ratios in order to develop new biomedical material. PCL was the main component in the blend. The miscibility and characteristics of the blends were investigated. The crystallization temperature of the blend shifted to high temperatures with an increase of the graft copolymer contents when the homopolymer PCL was the main component of the blend. The PEG side chain in the blend affected the crystallization rate of the PCL crystals in the blend and alternating extinction bands were observed by optical microscopy. The protein adhesion behavior of the film was influenced by the water uptake of the film.

Study on Properties of Eco-friendly Pot with Biodegradable PLA/PBAT Blend Film (생분해성 PLA-PBAT 블렌드 필름을 이용한 친환경 포트의 특성 연구)

  • Park, Han-saem;Song, Kang-yeop;Kang, Jae-ryeon;Seo, Wonjun;Lee, SeonJu;Lee, Won-Ki
    • Journal of Environmental Science International
    • /
    • v.24 no.8
    • /
    • pp.1037-1043
    • /
    • 2015
  • Since single-use disposable plastic usage has steadily been increasing, recent trends in polymeric research point to increasing demand for eco-friend materials which reduce plastic waste. A huge amount of non-degradable polypropylene (PP)-based pots for seedling culture are discarded for transplantation. The purpose of this study is to investigate an eco-friendly biodegradable material as a possible substitute for PP pot. The blend of poly(lactic acid) (PLA) with poly(butylene adipate-co-terephthalate) (PBAT) was used because of its good mechanical and flexible properties as well as biodegradation. After landfill, various properties of the blend pot were investigated by UTM, SEM, NMR and TGA. The results showed the tensile strength of the blend film rapidly decreased after 5 weeks of landfill due to degradation. From NMR data after landfill, the composition of PLA in the blend was decreased. These results indicate that the biodegradation of the blend preferentially occurs in PLA component. To investigate the effect of holes in pot bottom and side on root growth, a plant in the pot was grown. Some roots came out through holes as landfill period increases. These results indicate that the eco-friendly pot can be directly planted without the removal of pot.

The applicable evaluation of biodegradable polymer coated-mulching paper for afforestation seedlings (생분해성 고분자 코팅 조림묘목용 mulching mat 원지의 적용성 평가)

  • Lee, Geum-Ja;Yoo, Yeong-Jeong;Ko, Seung-Tae;Kim, Hyoung-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.1
    • /
    • pp.54-63
    • /
    • 2010
  • Recently, as the function of largest supplier of biomass for "low carbon green growth", the necessity for systematic management of afforestation areas is emphasizing. The forestation of seedling, besides the afforestation cost itself, is required some additional follow-up management costs, like mowing and fertilizing of forestation area, and removal of bindweed. The mulching mat for afforestation seedlings is available for rooting of little seedlings as well as initial forestation expenses. Mulching technique is also used to control soil temperature and moisture by covering the surface of ground. In this study, the paper based-mulching film coated with biodegradable polymer and functional additive was specially produced using laboratory bar coater, and analyzed for its degradable behavior. Coating colors were prepared by dissolving PE (polyester) 80 % and PLA(polylactic acid) 20 % in chloroform and finally applied to handsheet prepared by preceding study conditions. Base paper and polymer-coated paper were artificially aged by 2 kinds of degradation methods, which are soil degradation by microorganism and light degradation by 257 nm UV wavelengths. Strength property, oxidation index and morphological property were evaluated by reduction rates of tensile strength, FTIR spectra ratio of carboxyl and carbonyl group and SEM micrograph. As these results, polymer coated-paper was superior to base paper in degradation behaviors, having results with lower reduction rate of strength properties.