DOI QR코드

DOI QR Code

Preparation and Characterization of Biomass-based Polymer Blend Films

Biomass-based 고분자 블렌드필름의 제조 및 특성 연구

  • Lee, Soo (Department of Chemical Engineering, Changwon National University) ;
  • Jin, Seok-Hwan (Department of Chemical Engineering, Changwon National University) ;
  • Lee, Jae-Won (Department of Chemical Engineering, Changwon National University)
  • 이수 (창원대학교 화공시스템 공학과 고분자연구실) ;
  • 진석환 (창원대학교 화공시스템 공학과 고분자연구실) ;
  • 이재원 (창원대학교 화공시스템 공학과 고분자연구실)
  • Received : 2012.02.14
  • Accepted : 2012.03.16
  • Published : 2012.03.30

Abstract

To manufacture of a completely biodegradable and compostable biomass -based blend polymer film, two types of cellulose acetates(DS=2.4 and DS=2.7) were blended with 5 - 50 wt% of low average molecular weight polylactide(PLA) by mixing each polymer solution having same viscosity in 10 wt% methanol/dichloromethane. Their surface morphology, thermal and mechanical properties were studied. The chemical structures of blend films were confirmed by the fourier transform IR spectroscopy with attenuated total reflection(FT-IR ATR) spectrophotometer. Scanning electron microscope(SEM) photos of blend films of both CAs with less than 5 % of PLA showed homogeneous morphology. On the contrary, the other blends with higher than 20 wt% of PLA content showed a large phase separation with spherical domains. The thermal property of blend films was also analyzed with thermogravimetric analysis(TGA) and differential scanning calorimeter(DSC). The tensile strength of CA/PLA blend films was increased up to $820kg_f/cm^2$ for TAC/PLA and $600kg_f/cm^2$ for DAC/PLA.

완전 생분해성 고분자 블렌드필름을 제조하기 위하여 치환도가 다른 두 셀룰로오스 아세테이트(CA)에 5 - 50%의 저분자량 폴리락타이드(PLA)를 블렌딩하였다. 이 때 사용된 각각의 고분자는 10% 메탄올/메틸렌클로라이드 혼합용제에 녹여서 점도가 같은 조건의 농도로 제조하였다. 각 조성의 블렌드필름의 표면 모폴로지와 열적 성질, 기계적 성질을 조사하였다. 화학적 구조는 적외선 분광법으로 확인하였으며, 전자현미경을 통한 표면 분석 결과 5% 이하의 폴리락타이드를 함유한 블렌드필름은 상분리가 거의 일어나지 않았으며 20% 이상이 함유된 경우 상분리가 매우 심각하였다. 또한 블렌드필름의 인장강도는 셀룰로오스 아세테이트의 함량이 늘어날수록 TAC/PLA의 경우 $820kg_f/cm^2$ 및 DAC/PLA의 경우 $600kg_f/cm^2$까지 향상시킬 수 있었다.

Keywords

References

  1. N. Angelova, and D. Hunkeler, Rationalizing the Design of Polymeric Biomaterials, Trends Biotechnol., 17, 409 (1999).
  2. O. Pilai, and R. Panchagnula, Polymers in drug delivery, Curr. Opin. Chem. Biol, 5, 447 (2001).
  3. T. Miyata and T. Masuko, Crystallization behaviour of poly(l- lactide), Polymer, 39, 5515 (1998).
  4. L. Zhang, S. Goh, and S. Y. Lee, Crystallization behaviour of poly(llactide), Polymer, 39, 4841 (1998).
  5. J. R. Sarasua, A. L. Arraiza, P. Valerdi, and I. Maiza, Crystallinity and mechanical properties of optically pure polylactides and their blends, Polym. Eng. Sci., 45, 745 (2005).
  6. Z. Gan, D. Yu, Z. Zhong, Q. Liang, and X. Jing, Enzymatic degradation of polycaprolactone/poly(DL-lactide) blend in phospate buffer solution, Polymer, 40, 2859 (1999).
  7. E. Blumm, and A. J. Owen, Miscib- ility, Crystallization and Melting of poly(3-hydroxybutyrate)/poly(L-lactide) blends, Polymer, 36, 4077 (1995).
  8. Y. Wan, H. Wu, A. Yu, and D. Wen, Biodegradable polylactide/chitosan blend membranes, Biomacromolecules, 7, 1362 (2006).
  9. F. Chen, L. S. Liu, P. H. Cooke, K. B. Hicks, and J. Zhang, Performance Enhancement of Poly(lactic acid) and Sugar Beet Pulp Composites by Improving Interfacial Adhesion and Penetration, Ind. Eng. Chem. Res., 47, 8667 (2008).
  10. J. Guan and M. A. Hanna, Selected Morphological and Functional Properties of Extruded Acetylated Starch- Polylactic Acid Foams, Ind. Eng. Chem. Res.. 44, 3106 (2005).
  11. M. S. Huda, A. K. Mohanty, L. T. Drzal, E. Schut, and M. Misra, "Green" composites from recycled cellulose and poly(lactic acid): physico-mechanical and morphological properties evaluation, J. Mat. Sci., 40, 4221 (2005).
  12. M. Yamaguchi, S. Y. Lee, M. E. A. Manaf, M. Tsuji, and T. Yokohara, Modification of orientation birefringence of cellulose ester by addition of poly(lactic acid), Eur, Polym. J., 46, 2269 (2010).
  13. E. Petinakis, L. Yu, G. Edward, K. Dean, and H. Liu, and A. D. Scully, Effect of Matrix--Particle Interfacial Adhesion on the Mechanical Properties of Poly(lactic acid)/Wood-Flour Micro- Composites, J. Polym. Environ., 17, 83 (2009).
  14. G. Kister, G. Cassanas, and M. Vert, Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s, Polymer, 39(2), 267 (1998).
  15. Kruss USA., Manual for DSA 100 drop shape contact angle analysis system (2000).