• Title/Summary/Keyword: Bioconjugates

Search Result 5, Processing Time 0.021 seconds

Carbon Nanotube DNA Bioconjugates as Nano-Bio Markers (탄소 나노튜브와 DNA와의 결합을 통한 나노-바이오 마커 응용)

  • Hwang Eung-Soo;Chengfan Cao;Hong Sang-Hyun;Jung Hye-Jin;Cha Chang-Yong;Choi Jae-Boong;Kim Young-Jin;Baik Seung-Hyun
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.668-671
    • /
    • 2005
  • Carbon nanotubes exhibit strong fluorescence emissions in the region of near infrared regions where most biomolecules are transparent. Such signals are highly sensitive to environment variations as well as adsorption of specific biomolecules. In this research, single walled carbon nanotubes(SWNTs) are assembled with different types of DNAs and used to target specific types of DNAs. Dot blot investigations and corresponding raman spectroscopy observations demonstrated excellent selectivity of carbon nanotube-DNA bioconjugates. The results show possibility of using SWNT as generic nano-bio markers for precise detection of different kinds of genes.

  • PDF

The Current Status and Future Outlook of Quantum Dot-Based Biosensors for Plant Virus Detection

  • Hong, Sungyeap;Lee, Cheolho
    • The Plant Pathology Journal
    • /
    • v.34 no.2
    • /
    • pp.85-92
    • /
    • 2018
  • Enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR), widely used for the detection of plant viruses, are not easily performed, resulting in a demand for an innovative and more efficient diagnostic method. This paper summarizes the characteristics and research trends of biosensors focusing on the physicochemical properties of both interface elements and bioconjugates. In particular, the topological and photophysical properties of quantum dots (QDs) are discussed, along with QD-based biosensors and their practical applications. The QD-based Fluorescence Resonance Energy Transfer (FRET) genosensor, most widely used in the biomolecule detection fields, and QD-based nanosensor for Rev-RRE interaction assay are presented as examples. In recent years, QD-based biosensors have emerged as a new class of sensor and are expected to open opportunities in plant virus detection, but as yet there have been very few practical applications (Table 3). In this article, the details of those cases and their significance for the future of plant virus detection will be discussed.

Enzyme-Conjugated CdSe/ZnS Quantum Dot Biosensors for Glucose Detection

  • Kim, Gang-Il;Sung, Yun-Mo
    • Korean Journal of Materials Research
    • /
    • v.19 no.1
    • /
    • pp.44-49
    • /
    • 2009
  • Conjugated nanocrystals using CdSe/ZnS core/shell nanocrystal quantum dots modified by organic linkers and glucose oxidase (GOx) were prepared for use as biosensors. The trioctylphophine oxide (TOPO)-capped QDs were first modified to give them water-solubility by terminal carboxyl groups that were bonded to the amino groups of GOx through an EDC/NHS coupling reaction. As the glucose concentration increased, the photoluminescence intensity was enhanced linearly due to the electron transfer during the enzymatic reaction. The UV-visible spectra of the as-prepared QDs are identical to that of QDs-MAA. This shows that these QDs do not become agglomerated during ligand exchanges. A photoluminescence (PL) spectroscopic study showed that the PL intensity of the QDs-GOx bioconjugates was increased in the presence of glucose. These glucose sensors showed linearity up to approximately 15 mM and became gradually saturated above 15 mM because the excess glucose did not affect the enzymatic oxidation reaction past that amount. These biosensors show highly sensitive variation in terms of their photoluminescence depending on the glucose concentration.

Enhanced Internalization of Macromolecular Drugs into Mycobacterium smegmatis with the Assistance of Silver Nanoparticles

  • Sun, Fangfang;Oh, Sangjin;Kim, Jeonghyo;Kato, Tatsuya;Kim, Hwa-Jung;Lee, Jaebeom;Park, Enoch Y.
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.8
    • /
    • pp.1483-1490
    • /
    • 2017
  • In this study, silver nanoparticles (AgNPs) were synthesized by the citrate reduction process and, with the assistance of n-hydroxysuccinimide and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, were successfully loaded with the macromolecular drug vancomycin (VAM) to form AgNP-VAM bioconjugates. The synthesized AgNPs, VAM, and AgNP-VAM conjugate were characterized by UV-visible spectroscopy, zeta potential analysis, confocal microscopy, and transmission electron microscopy. The effect of loading VAM onto AgNPs was investigated by testing the internalization of the bioconjugate into Mycobacterium smegmatis. After treatment with the AgNP-VAM conjugate, the bacterial cells showed a significant decrease in UV absorption, indicating that loading of the VAM on AgNPs had vastly improved the drug's internalization compared with that of AgNPs. All the experimental assessments showed that, compared with free AgNPs and VAM, enhanced internalization had been successfully achieved with the AgNP-VAM conjugate, thus leading to significantly better delivery of the macromolecular drug into the M. smegmatis cell. The current research provides a new potential drug delivery system for the treatment of mycobacterial infections.

Colorimetric Determination of pH Values using Silver Nanoparticles Conjugated with Cytochrome c

  • Park, Jun-Su;Choi, In-Hee;Kim, Young-Hun;Yi, Jong-Heop
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3433-3436
    • /
    • 2011
  • Some of metal nanoparticles have the potential for use as colorimetric assays for estimating solution properties, such as pH and temperature due to localized surface plasmon (LSP) phenomena. This report describes the use of silver nanoparticles (AgNP) conjugated with cytochrome c (Cyt c) for the colorimetric determination of solution pHs. When the pH of a solution decreases, the Cyt c immobilized on the AgNP undergoes a conformational change, leading to a decrease in the interparticle distance between Cyt c-AgNP probes and consequent red-shift in LSP. As a result, the color of the Cyt c-AgNP probe solution changes from yellow to red and finally to a grayish blue in the pH range from 11 to 3. This gradual color change can be used to determine the pH of a solution over a wide pH range, compared to other colorimetric methods that use gold nanoparticles.