• Title/Summary/Keyword: Biocompatible materials

Search Result 200, Processing Time 0.03 seconds

Alveolar ridge preservation with a collagen material: a randomized controlled trial

  • Schnutenhaus, Sigmar;Doering, Isabel;Dreyhaupt, Jens;Rudolph, Heike;Luthardt, Ralph G.
    • Journal of Periodontal and Implant Science
    • /
    • v.48 no.4
    • /
    • pp.236-250
    • /
    • 2018
  • Purpose: Resorption of the alveolar bone is an unavoidable consequence of tooth extraction when appropriate alveolar ridge preservation (ARP) measures are not taken. The objective of this trial was to test the hypothesis that dimensional changes in the alveolar bone after tooth extraction would be reduced by inserting an equine collagen membrane and a collagen cone to fill and seal the alveolus (as ARP), in comparison to extraction with untreated alveoli. Methods: In this randomized clinical trial, 31 patients were directly treated with the collagen material after extraction of a tooth from the maxilla (the ARP group). Twenty-nine patients served as the control group. After extraction, no further treatment (i.e., no socket preservation measures) was performed in the control group. Changes in the alveolar process immediately after extraction and after an 8 (${\pm}1$)-week healing period were evaluated 3-dimensionally. Blinded analyses were performed after superimposing the data from the digitalized impressions and surfaces generated by cone-beam computed tomography. Results: Both the ARP and control groups showed a reduction of bone in the alveolar area after tooth extraction. However, significantly less bone resorption was detected in the clinically relevant buccal region in the ARP group. The median bone reduction was 1.18 mm in the ARP group and 5.06 mm in the control group (P=0.03). Conclusions: The proposed hypothesis that inserting a combination material comprising a collagen cone and membrane would lead to a difference in alveolar bone preservation can be accepted for the clinically relevant buccal distance. In this area, implantation of the collagen material led to significantly less alveolar bone resorption. German Clinical Trials Register at www.drks.de, DRKS00004769.

Bone apposition on implants coated with calcium phosphate by ion beam assisted deposition in oversized drilled sockets: a histologic and histometric analysis in dogs

  • Kim, Min-Soo;Jung, Ui-Won;Kim, Sungtae;Lee, Jung-Seok;Lee, In-Seop;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.1
    • /
    • pp.18-23
    • /
    • 2013
  • Purpose: The purpose of this study was to evaluate the osseointegration of calcium phosphate (CaP)-coated implants by ion beam assisted deposition with a lack of primary stability. Methods: A total of 20 CaP-coated implants were bilaterally placed in the mandible of five dogs. In the rotational implant group, the implants were inserted in oversized drilled sockets without mechanical engagement, while the conventional surgical protocol was followed in the control group. Each group was allowed to heal for 4 and 8 weeks. The bone-to-implant contact (BIC, %) was measured by a histometric analysis. Results: All of the implants were well-maintained and healing was uneventful. In the histologic observation, all of the implants tested were successfully osseointegrated with a high level of BIC at both observation intervals. There was no significant difference in BIC among any of the groups. Conclusions: Within the limitation of this study, successful osseointegration of CaP-coated implants could be achieved in unfavorable conditions without primary stability.

중간엽줄기세포와 생분해성 매트릭스를 이용한 혈관 패치 개발

  • Jo, Seung-U;Kim, Dong-Ik;Park, Hui-Jeong;Choe, Cha-Yong;Kim, Byeong-Su
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.98-100
    • /
    • 2003
  • Synthetic polymers such as PET and ePTFE have widely been used for artificial vascular patches. However, these materials cannot function for a long term as blood vessel due to thrombotic occlusion and calcification. To overcome this limitation, a biocompatible vascular patch was developed using stem cell and tissue engineering approach. Autologous bone marrow mesenchymal stem cells were differentiated into vascular endothelial cells and smooth muscle cells. These cells were seeded onto collagen patch matrices. The matrices were anastomosed to abdominal arteries in canine models. Prior to implantation, histological and scanning electron microscopical examination revealed stem cell adhesion and growth on the matrices. At 3 weeks, the implanted vascular patches were patent. Histological examination showed the regeneration of endothelium, media and adventitia in the grafts. Cell tracing analysis using fluorescent reagent showed that labeled stem cells were present in the implanted grafts and contributed to the regeneration of vascular tissues. This study may help us develop a tissue-engineered vascular patch appropriate for clinical applications.

  • PDF

Development of Implantable Blood Pressure Sensor Using Quartz Wafer Direct Bonding and Ultrafast Laser Cutting (Quatrz 웨이퍼의 직접접합과 극초단 레이저 가공을 이용한 체내 이식형 혈압센서 개발)

  • Kim, Sung-Il;Kim, Eung-Bo;So, Sang-kyun;Choi, Jiyeon;Joung, Yeun-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.168-177
    • /
    • 2016
  • In this paper we present an implantable pressure sensor to measure real-time blood pressure by monitoring mechanical movement of artery. Sensor is composed of inductors (L) and capacitors (C) which are formed by microfabrication and direct bonding on two biocompatible substrates (quartz). When electrical potential is applied to the sensor, the inductors and capacitors generates a LC resonance circuit and produce characteristic resonant frequencies. Real-time variation of the resonant frequency is monitored by an external measurement system using inductive coupling. Structural and electrical simulation was performed by Computer Aided Engineering (CAE) programs, ANSYS and HFSS, to optimize geometry of sensor. Ultrafast laser (femto-second) cutting and MEMS process were executed as sensor fabrication methods with consideration of brittleness of the substrate and small radial artery size. After whole fabrication processes, we got sensors of $3mm{\times}15mm{\times}0.5mm$. Resonant frequency of the sensor was around 90 MHz at atmosphere (760 mmHg), and the sensor has good linearity without any hysteresis. Longterm (5 years) stability of the sensor was verified by thermal acceleration testing with Arrhenius model. Moreover, in-vitro cytotoxicity test was done to show biocompatiblity of the sensor and validation of real-time blood pressure measurement was verified with animal test by implant of the sensor. By integration with development of external interrogation system, the proposed sensor system will be a promising method to measure real-time blood pressure.

Preparation, Characterization and Cytotoxicity of Silibinin-Containing Nanoniosomes in T47D Human Breast Carcinoma Cells

  • Amiri, Boshra;Ebrahimi-Far, Meysam;Saffari, Zahra;Akbarzadeh, Azim;Soleimani, Esmaeil;Chiani, Mohsen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.8
    • /
    • pp.3835-3838
    • /
    • 2016
  • Background: Breast cancer is one of the most frequent cancer types within female populations. Silibinin is a chemotherapeutic agent ative against cancer. Niosomes are biodegradable, biocompatible, safe and effective carriers for drug delivery. Objective:To prepare nanoniosomal silibinin and evaluate its cytotoxicity inthe T-47D breast cancer cell line. Materials and Methods: Niosomes were prepared by reverse phase evaporation of a mixture of span 20, silibinin, PEG-2000 and cholesterol in chloroform and methanol solvent (1:2 v/v). The solvent phase was evaporated using a rotary evaporator and the remaining gel phase was hydrated in phosphate buffer saline. Mean size, size distribution and zeta potential of niosomes were measured with a Zetasizer instrument and then nanoparticles underwent scanning electron microscopy. The drug releasing pattern was evaluated by dialysis and the cytotoxicity of nanoniosomes in T-47D cells was assessed by MTT assay. Results: Particle size, size variation and zeta potential of the niosomal nanoparticles were measured as $178.4{\pm}5.4nm$, $0.38{\pm}0.09$ and $-15.3{\pm}1.3mV$, respectively. The amount of encapsulated drug and the level of drug loading were determined $98.6{\pm}2.7%$ and $22.3{\pm}1.8%$, respectively; released drug was estimated about $18.6{\pm}2.5%$ after 37 hours. The cytotoxic effects of nanoniosome were significantly increased when compared with the free drug. Conclusions: This study finding suggests that silibinin nanoniosomes could serve as a new drug formulation for breast cancer therapy.

The effect of fibronectin-coated implant on canine osseointegration

  • Kim, Sung-Tae;Myung, Woo-Chun;Lee, Jung-Seok;Cha, Jae-Kook;Jung, Ui-Won;Yang, Hyeong-Cheol;Lee, In-Seop;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.5
    • /
    • pp.242-247
    • /
    • 2011
  • Purpose: The purpose of this study was to characterize the osseointegration of the fibronectin-coated implant surface. Methods: Sand-blasted, large-grit, acid-etched (SLA) surface implants, with or without a thin calcium phosphate and fibronectin coating, were placed in edentulous mandibles of dogs 8 weeks after extraction. All dogs were sacrificed forhistological and histomorphometric evaluation after 4- and 8-week healing periods. Results: All types of implants were clinically stable without any mobility. Although the bone-to-implant contact and bone density of the SLA implants coated with calcium phosphate (CaP)/fibronectin were lower than the uncoated SLA implants, there were no significant differences between the uncoated SLA surface group and the SLA surface coated with CaP/fibronectin group. Conclusions: Within the limits of this study, SLA surfaces coated with CaP/fibronectin were shown to have comparable bone-to-implant contact and bone density to uncoated SLA surfaces.

Design of Implantable Microphone for Artificial Middle Ear System

  • Kim Min-Kyu;Lim Hyung-Gyu;Yoon Young-Ho;Lee Jyung-Hyun;Park Il-Yong;Song Byung-Seop;Kim Myoung-Nam;Cho Jin-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.3
    • /
    • pp.139-144
    • /
    • 2005
  • An implantable microphone that can be utilized as part of a totally implantable hearing aid is designed and implemented. The proposed microphone is implanted in the center of the pinna, and designed to ensure the speech frequency range and the appropriate sensitivity. The characteristics of the proposed microphone are evaluated using a finite element analysis (FEA). The microphone is composed of a small electric condenser microphone, titanium case 6.2mm in diameter and 3mm high, and $10{\mu}m$ SUS316L vibrating membrane in contact with hypodermic tissue to maintain the sensitivity of the microphone. The microphone components are all made of biocompatible materials, then the assembled microphone is hermetically sealed using a polymer and ceramic. Experiments with the fabricated microphone confirm an operational bandwidth of up to 5kHz without any decline of sensitivity in 6mm of hypodermic tissue.

Comparative assessment of antibacterial activity of different glass ionomer cements on cariogenic bacteria

  • Naik, Rahul Gaybarao;Dodamani, Arun Suresh;Khairnar, Mahesh Ravindra;Jadhav, Harish Chaitram;Deshmukh, Manjiri Abhay
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.4
    • /
    • pp.278-282
    • /
    • 2016
  • Objectives: Glass ionomer cements (GICs), which are biocompatible and adhesive to the tooth surface, are widely used nowadays for tooth restoration. They inhibit the demineralization and promote the remineralization of the tooth structure adjacent to the restoration, as well as interfere with bacterial growth. Hence, the present study was conducted to assess and compare the antimicrobial activity of three commercially available GICs against two cariogenic bacteria. Materials and Methods: An agar plate diffusion test was used for evaluating the antimicrobial effect of three different GICs (Fuji IX, Ketac Molar, and d-tech) on Streptococcus mutans (S. mutans) and Lactobacillus acidophilus (L. acidophilus). Thirty plates were prepared and divided into two groups. The first group was inoculated with S. mutans, and the second group was inoculated with L. acidophilus. These plates were then incubated at $37^{\circ}C$ for 24 hours. Zones of bacterial growth inhibition that formed around each well were recorded in millimeters (mm). Results: The zones of inhibition for Fuji IX, Ketac Molar, and d-tech on S. mutans were found to be $10.84{\pm}0.22mm$, $10.23{\pm}0.15mm$, and $15.65{\pm}0.31mm$, respectively, whereas those for L. acidophilus were found to be $10.43{\pm}0.12mm$, $10.16{\pm}0.11mm$, and $15.57{\pm}0.13mm$, respectively. Conclusions: D-tech cement performed better in terms of the zone of bacterial inhibition against the two test bacteria, than the other two tested glass ionomers.

Synthesis of Lactide/Hyaluronic Acid Polymer Membrane for the Application of Drug Delivery System (약물방출시스템 적용을 위한 락타이드/히아루론산 고분자 막의 제조)

  • Kim, Min-Su;Kwon, Ji-Young;Cheong, Seong-Ihl
    • Membrane Journal
    • /
    • v.15 no.4
    • /
    • pp.281-288
    • /
    • 2005
  • The hyaluronic acid (HA) with excellent biocompatibility can be combined with lactide, the ester dimer of polylactide, with good biodegradability to produce biocompatible materials applicable to drug delivery system. By freeze drying method, HA and lactide were crosslinked with crosslinking agent, 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide. Degree of lactide and EDC reaction was determined by the analysis of nuclear magnetic resonance (NMR) spectroscopy. The degree of lactide and EDC reaction increased and swelling ratio decreased as the mole ratio of lactide to HA or crosslinking agent concentration increased or reaction temperature decreased. The drug release experiment result from membranes having different degree of lactide reaction showed that drug release rate reduced in proportion to the degree of lactide reaction. The drug release experiment result from drugs having different hyrodphobicity showed that the more hydrophobic drug was released more slowly.

Characterization of Hyaluronic Acid Membrane Containing Lactic Acid (젖산이 결합된 히아루론산 막의 특성)

  • Cheong Seong Ihl;Kwon Ji Young
    • Membrane Journal
    • /
    • v.15 no.1
    • /
    • pp.8-14
    • /
    • 2005
  • The hyaluronic acid (HA) with excellent biocompatibility can be combined with the monomer polylactide with good biodegradability to produce biocompatible materials which can control the period of degradation in a human body. By freeze drying method, HA and the lactic acid, monomer of polylactide, or lactide, the ester dimer of polylactide, were crosslinked with crosslinking agent, l-ethyl-3-(3-dimethyl aminopropyl) carbodiimide. The analysis of infrared spectroscopy showed that the ester linkage was formed and the analysis of nuclear magnetic resonance (NMR) spectroscopy showed that the ester linkage was due to the reaction of lactic acid and HA. The conversion (6∼32%) and degree of crosslinking (4∼19%) increased but the selectivity was almost constant at 62% as the mole ratio of LA to HA increased from 1 to 10 in the crosslinking reaction. The brittleness became more pronounced and the rate of degradation became faster with more addition of lactic acid resulting from the higher ratio of LA to HA, and the swelling ratio was in the range of 500 to 2000%.