• 제목/요약/키워드: Biocompatibility materials

Search Result 405, Processing Time 0.028 seconds

Synthesis and characterization of thiolated hexanoyl glycol chitosan as a mucoadhesive thermogelling polymer

  • Cho, Ik Sung;Oh, Hye Min;Cho, Myeong Ok;Jang, Bo Seul;Cho, Jung-Kyo;Park, Kyoung Hwan;Kang, Sun-Woong;Huh, Kang Moo
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.249-258
    • /
    • 2018
  • Background: Mucoadhesive polymers, which may increase the contact time between the polymer and the tissue, have been widely investigated for pharmaceutical formulations. In this study, we developed a new polysaccharide-based mucoadhesive polymer with thermogelling properties. Methods: Hexanoyl glycol chitosan (HGC), a new thermogelling polymer, was synthesized by the chemical modification of glycol chitosan using hexanoic anhydride. The HGC was further modified to include thiol groups to improve the mucoadhesive property of thermogelling HGC. The degree of thiolation of the thiolated HGCs (SH-HGCs) was controlled in the range of 5-10% by adjusting the feed molar ratio. The structure of the chemically modified polymers was characterized by $^1H$ NMR and ATR-FTIR. The sol-gel transition, mucoadhesiveness, and biocompatibility of the polymers were determined by a tube inverting method, rheological measurements, and in vitro cytotoxicity tests, respectively. Results: The aqueous solution (4 wt%) of HGC with approximately 33% substitution showed a sol-gel transition temperature of approximately $41^{\circ}C$. SH-HGCs demonstrated lower sol-gel transition temperatures ($34{\pm}1$ and $31{\pm}1^{\circ}C$) compared to that of HGC due to the introduction of thiol groups. Rheological studies of aqueous mixture solutions of SH-HGCs and mucin showed that SH-HGCs had stronger mucoadhesiveness than HGC due to the interaction between the thiol groups of SH-HGCs and mucin. Additionally, we confirmed that the thermogelling properties might improve the mucoadhesive force of polymers. Several in vitro cytotoxicity tests showed that SH-HGCs showed little toxicity at concentrations of 0.1-1.0 wt%, indicating good biocompatibility of the polymers. Conclusions: The resultant thiolated hexanoyl glycol chitosans may play a crucial role in mucoadhesive applications in biomedical areas.

Graphene: an emerging material for biological tissue engineering

  • Lee, Sang Kyu;Kim, Hyun;Shim, Bong Sup
    • Carbon letters
    • /
    • v.14 no.2
    • /
    • pp.63-75
    • /
    • 2013
  • Graphene, a carbon crystal sheet of molecular thickness, shows diverse and exceptional properties ranging from electrical and thermal conductivities, to optical and mechanical qualities. Thus, its potential applications include not only physicochemical materials but also extends to biological uses. Here, we review recent experimental studies about graphene for such bioapplications. As a prerequisite to the search to determine the potential of graphene for bioapplications, the essential qualities of graphene that support biocompatibility, were briefly summarized. Then, direct examples of tissue regeneration and tissue engineering utilizing graphenes, were discussed, including uses for cell scaffolds, cell modulating interfaces, drug delivery, and neural interfaces.

Heparinized Bioactive Polymers for Biomedical Applications

  • Park, Ki-Dong;Go, Dong-Hyun;Bae, Jin-Woo;Jee, Kyung-Soo
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.48-49
    • /
    • 2006
  • The incorporation of heparin to biomaterials has been widely studied to improve the biocompatibility (blood and cell) of biomaterials surfaces. In our laboratory, various kinds of heparinized polymers including heparinized thermosensitive polymers ($Tetronic^{(R)}$-PLA(PCL)-heparin copolymers) and star-shaped PLA-heparin copolymers have been developed as a novel blood/cell compatible material. These heparinized polymers have demonstrated their unique properties due to bound heparin, resulting in improved biocompatibility. These heparinized bioactive polymers can be applied as blood and tissue compatible biodegradable materials in variable medical application such as tissue engineering and drug delivery system.

  • PDF

Ion release and Biocompatibility of Ti-6Al-4V Alloys for Dental application

  • Kang, Jung-In;Son, Mee-Kyoung;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.303-303
    • /
    • 2015
  • In order to investigate ion release and biocompatibility of Ti-6Al-4V dental alloy by electrochemical corrosion test and MTT assay, commercial Ti-6Al-4V alloy rod (99.99% Ti, USA, Co) were used in the study. The microstructure of the alloys was examined by optical microscopy (OM), Field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), MTT assay, and corrosion test. From the polarization curves, very low current densities were obtained for Ti-6Al-4V alloys, indicating a formation of stable passive layer.

  • PDF

In vivo study on the biocompatibility of newly developed calcium phosphate-based root canal sealers

  • Kim, Jin-Su;Bae, Kwang-Shik
    • Proceedings of the KACD Conference
    • /
    • 2003.11a
    • /
    • pp.592-593
    • /
    • 2003
  • I. Objectives The purpose of this study was to compare in vivo the biocompatibility of new calcium phosphate-based root canal sealers(CAPSEAL I, CAPSEAL II) with another type of commercially available calcium phosphate sealer (Apatite Root Sealer type I, Apatite Root Sealer type II) and zinc oxide-eugenol-based sealer (Pulp Canal Sealer EWT) after implantaion in rat subcutaneous tissue. II. Materials and Methods 64 Sprague-Dawley rats were used. There were five groups of three animals each for experimental period of 1, 2, 4, and 12 weeks. The teflon tubes, 5mm in length with an inner diameter of 1.5mm, were washed with ethanol and distilled weter and autoclaved.(omitted)

  • PDF

A Study on the Surface Treatment of Dental Implant using a Fiber Laser (파이버 레이저를 이용한 치과용 임플란트 표면처리에 관한 연구)

  • Shin, Ho-Jun;Yang, Yun-Seok;Hwang, Chan-Youn;Yoo, Young-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.915-928
    • /
    • 2011
  • Titanium for dental implant application has the superior properties of biocompatibility, specific strength, and corrosion resistance. However, it is extremely difficult to find a suitable surface treatment method for sufficient osseointegration with biological tissue/bone cell and implant surface. Surface treatment technology using laser has been researched as the way to increase surface area of implant. In this study, to develop the surface treatment process with improved adhesion between implant and bone cell at the same time for superior biocompatibility, pulsed laser beam was overlapped continuously for scribed surface morphology and determination of friction coefficient. As the results, surface area and friction coefficient was increased over 2 times by the comparison with sand blasting, which is used for the conventional method. In this time, the optimal condition for laser beam power and beam irradiation speed was 13 watt and 50 mm/sec, respectively.

Electrochemical Behaviors of PEO-treated Ti-6Al-4V Alloy in Solution Containing Zn and Si Ions

  • Hwang, In-Jo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.160-160
    • /
    • 2017
  • Commercially pure titanium (Cp-Ti) and Ti alloys (typically Ti-6Al-4V) display excellent corrosion resistance and biocompatibility. Although the chemical composition and topography are considered important, the mechanical properties of the material and the loading conditions in the host have, conventionally. Ti and its alloys are not bioactive. Therefore, they do not chemically bond to the bone, whereas they physically bond with bone tissue. The electrochemical deposition process provides an effective surface for biocompatibility because large surface area can be served to cell proliferation. Plasma electrolyte oxidation (PEO) enables control in the chemical composition, porous structure, and thickness of the TiO2 layer on Ti surface. Silicon (Si) in particular has been found to be essential for normal bone and cartilage growth and development. Zinc (Zn) plays very important roles in bone formation and immune system regulation, and is also the most abundant trace element in bone. The objective of this work was to study on electrochemical behaviors of PEO-treated Ti-6Al-4V Alloy in solution containing Zn and Si ions. The morphology, the chemical composition, and the microstructure analysis of the sample were examined using FE-SEM, EDS, and XRD. The potentiodynamic polarization and AC impedance tests for corrosion behaviors were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat. The promising results successfully demonstrated the immense potential of Si/Zn-TiO2 coatings in dental and biomaterials applications.

  • PDF

Enhanced Hemolytic Biocompatibility of Hydroxyapatite by Chromium (Cr3+) Doping in Hydroxyapatite Nanoparticles Synthesized by Solution Combustion Method

  • Bandgar, Sneha S.;Yadav, Hemraj M.;Shirguppikar, Shailesh S.;Shinde, Mahesh A;Shejawal, Rajendra V.;Kolekar, Tanaji V.;Bamane, Sambhaji R.
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.2
    • /
    • pp.158-166
    • /
    • 2017
  • For the better success of biomedical implant surgery, we used a modified solution combustion method to synthesize Hydroxyapatite (HA) and Chromium ($Cr^{3+}$) modified Cr-HA with different concentrations of 0.5, 1.0, 1.5, 2.0 and 2.5. The Cr-HA nanopowder was characterized by TGA, XRD, SEM-EDS and TEM. The HA and Cr-HA powders were subjected to in vitro biological studies to determine their biocompatibility and hemocompatibility. The cytotoxicity of HA and Cr-HA were evaluated on Hela (Cervical cancer) cells and L929 (mouse fibroblast) cells by using MTT assay. Hemocompatibility studies demonstrated a noticeable haemolytic ratio below 5%, which confirms that these materials are compatible in nature with human blood. The results of the present work confirm that the synthesised HA and Cr-HA are biocompatible and can be extensively used in the biomedical field to improve overall material biological properties.

Biocompatibility of Low Modulus Porous Titanium Implants Fabricated by Spark Plasma Sintering (방전플라즈마소결법에 의해 제조된 저탄성 타이타늄 다공질체의 생체적합성 평가)

  • Song, Ho-Yeon;Kim, Young-Hee;Chang, Se-Hun;Oh, Ik-Hyun
    • Korean Journal of Materials Research
    • /
    • v.17 no.2
    • /
    • pp.107-114
    • /
    • 2007
  • Porous Ti compacts were fabricated by spark plasma sintering (SPS) method and their in vitro and in vivo biocompatibilities were investigated. Alkaline phosphatase (ALP) activity representing the activity of osteoblast was increased when osteoblast-like MG-63 cells were cultured on the Ti powder surface. Some genes related to cell growth were over-expressed through microarray analysis. The porous Ti compact with 32.2% of porosity was implanted in the subcutaneous tissue of rats to confirm in vivo cytotoxicity. 12 weeks post-operation, outer surface and inside the porous body was fully filled with fibrous tissue and the formation of new blood vessels were observed. No inflammatory response was confirmed. To investigate the osteoinduction, porous Ti compact was implanted in the femur of NZW rabbits for 4 months. Active in-growth of new bone from the surrounded compact bone was observed around the porous body. From the results, The porous Ti compacts fabricated by spark plasma sintering might be available for the application of the stem part of artificial hip joint.