Browse > Article
http://dx.doi.org/10.4191/kcers.2017.54.2.11

Enhanced Hemolytic Biocompatibility of Hydroxyapatite by Chromium (Cr3+) Doping in Hydroxyapatite Nanoparticles Synthesized by Solution Combustion Method  

Bandgar, Sneha S. (Department of Chemistry, Lal Bahadur Shastri College)
Yadav, Hemraj M. (Department of Energy and Materials Engineering, Dongguk University of Seoul)
Shirguppikar, Shailesh S. (Rajaram Bapu institute of Technology)
Shinde, Mahesh A (Rajaram Bapu institute of Technology)
Shejawal, Rajendra V. (Department of Chemistry, Lal Bahadur Shastri College)
Kolekar, Tanaji V. (Rajaram Bapu institute of Technology)
Bamane, Sambhaji R. (Department of Chemistry, R.S.B. Mahavidyalaya)
Publication Information
Abstract
For the better success of biomedical implant surgery, we used a modified solution combustion method to synthesize Hydroxyapatite (HA) and Chromium ($Cr^{3+}$) modified Cr-HA with different concentrations of 0.5, 1.0, 1.5, 2.0 and 2.5. The Cr-HA nanopowder was characterized by TGA, XRD, SEM-EDS and TEM. The HA and Cr-HA powders were subjected to in vitro biological studies to determine their biocompatibility and hemocompatibility. The cytotoxicity of HA and Cr-HA were evaluated on Hela (Cervical cancer) cells and L929 (mouse fibroblast) cells by using MTT assay. Hemocompatibility studies demonstrated a noticeable haemolytic ratio below 5%, which confirms that these materials are compatible in nature with human blood. The results of the present work confirm that the synthesised HA and Cr-HA are biocompatible and can be extensively used in the biomedical field to improve overall material biological properties.
Keywords
Cr-Hydroxyapatite; MTT assay; Hela(Cervical cancer) and L929 cells; Hemolysis; Biomedical applications;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Brodner, P. Bitzan, V. Meisinger, A. Kaider, F. Gottsauner- Wolf, and R. Kotz, "Elevated Serum Cobalt with Metal-on- Metal Articulating Surfaces," J. Bone Jt. Surg., Br. Vol., 79 [2] 16-21 (1997).
2 P. Collery, Y. Maymard, T. Theophanides, L. Khassanova, and T. Collery, "Metal Ions in Biology," J. John Libbey: New Barnet, 10 739-42 (2008).
3 S. A. Katz and H. Salem, "The Toxicology of Chromium with Respect to its Chemical Speciation: A Review," J. Appl. Toxicol., 13 [3] 217-24 (1993).   DOI
4 J. Devoya, A. Gehinb, S. Mullera, M. Melczera, A. Remya, G. Antoinea, and I. Sponnec, "Evaluation of Chromium in Red Blood Cells as an Indicator of Exposure to Hexavalent Chromium: An in vitro Study," Toxicol. Lett., 255 63-70 (2016).   DOI
5 H. Yin, P. S. Casey, M. J. McCall, and M. Fenech, "Effects of Surface Chemistry on Cytotoxicity, Genotoxicity, and the Generation of Reactive Oxygen Species Induced by ZnO Nanoparticles," Langmuir, 26 [19] 15399-408 (2010).   DOI
6 H. M. Yadav, T. V. Kolekar, A. S. Barge, N. D. Thorat, S. D. Delekar, B. M. Kim, B. J. Kim, and J. S. Kim, "Enhanced Visible Light Photocatalytic Activity of $Cr^{3+}$-Doped Anatase $TiO_2$ Nanoparticles Synthesized by Sol-Gel Method," J. Mater. Sci.: Mater. Electron., 27 [1] 526-34 (2016).   DOI
7 M. J. Phillips, J. A. Darr, Z. B. Luklinska, and I. Rehman, "Synthesis and Characterization of Nano-Biomaterials with Potential Osteological Applications," J. Mater. Sci.: Mater. Med., 14 [10] 875-82 (2003).   DOI
8 T. Metanawin, T. Tang, R. Chen, D. Vernon, and X. Wang, "Cytotoxicity and Photocytotoxicity of Structure-Defined Water-Soluble C60/Micelle Supramolecular Nanoparticles," Nanotechnology, 22 [23] 235-39 (2011).
9 L. L. Hench, "Bioceramics," J. Am. Ceram. Soc., 81 [7] 1705-28 (1998).   DOI
10 S. V. Dorozhkin, "A Detailed History of Calcium Orthophosphates from 1770s till 1950," Mater. Sci. Eng., C, 33 [6] 3085-110 (2013).   DOI
11 G. Mabilleau, R. Filmon, P. K. Petrov, M. F. Basle, A. Sabokbar, and D. Chappard, "Cobalt, Chromium and Nickel Affect Hydroxyapatite Crystal Growth in vitro," Acta Biomater., 6 [4] 1555-60 (2010).   DOI
12 E. S. Ahn, N. J. Gleason, A. Nakahira, and J. Y. Ying, "Nanostructure Processing of Hydroxyapatite-Based Bioceramics," Nano Lett., 1 [3] 149-53 (2001).   DOI
13 H. Zhou and J. Lee, "Nanoscale Hydroxyapatite Particles for Bone Tissue Engineering," Acta Biomater., 7 [7] 2769-81 (2011).   DOI
14 D. Tanaskovic, B. Jokic, G. Socol, A. Popescu, I. N. Mihailescu, R. Petrovic, and D. Janackovic, "Synthesis of Functionally Graded Bioactive Glass-Apatite Multistructures on Ti Substrates by Pulsed Laser Deposition," Appl. Surf. Sci., 254 [4] 1279-82 (2007).   DOI
15 K. Hayashi, T. Mashima, and K. Uenoyama, "The Effect of Hydroxyapatite Coating on Bony Ingrowth into Grooved Titanium Implants," Biomaterials, 20 [2] 111-19 (1999).   DOI
16 H. F. Morris and S. Ocbi, "Hydroxyapatite-Coated Implants: A Case for Their Use," J. Oral Maxillofac. Surg., 56 [11] 1303-13 (1998).   DOI
17 R. Z. LeGeros, "Calcium Phosphate-Based Osteoinductive Materials," Chem. Rev., 108 [11] 4742-53 (2008).   DOI
18 C. J. Chung, R. T. Su, H. J. Chu, H. T. Chen, H. K. Tsou, and J. L. He, "Plasma Electrolytic Oxidation of Titanium and Improvement in Osseointegration," J. Biomed. Mater. Res., Part B, 101 [6] 1023-30 (2013).
19 Y. Tanaka, Y. Hirata, and R. Yoshinaka, "Synthesis and Characteristics of Ultrafine Hydroxyapatite Particles," J. Ceram. Process. Res., 4 [4] 197-201 (2003).
20 I. Smiciklas, A. Onjia, J. Markovic, and S. Raicevic, "Comparison of Hydroxyapatite Sorption Properties towards Cadmium, Lead, Zinc and Strontium Ions," Mater. Sci. Forum, 494 405-10 (2005).   DOI
21 E. D. Berry and G. R. Siragusa, "Hydroxyapatite Adherence as a Means to Concentrate Bacteria," Appl. Environ. Microbiol., 63 [10] 4069-74 (1997).
22 M. Niinomi, M. Nakai, and J. Hieda, "Development of New Metallic Alloys for Biomedical Applications," Acta Biomater., 8 [11] 3888-903 (2012).   DOI
23 K. C. Barick, S. Singh, N. V. Jadhav, D. Bahadur, B. N. Pandey, and P. A. Hassan, "pH-Responsive Peptide Mimic Shell Cross-Linked Magnetic Nanocarriers for Combination Therapy," Adv. Funct. Mater, 22 [23] 4975-84 (2012).   DOI
24 K. S. Oh, K. J. Kim, Y. K. Jeong, and Y. H. Choa, "Effect of Fabrication Processes on the Antimicrobial Properties of Silver Doped Nano-Sized Hap," Key Eng. Mater., 240 583- 86 (2003).
25 M. Wakamura, K. Kandori, and T. ishikawa, "Surface Structure and Composition of Calcium Hydroxyapatites Substituted with Al(III), La(III) and Fe(III) Ions," Colloids Surf., A, 164 [2] 297-305 (2000).   DOI
26 B. Alemon, M. Flores, W. Ramirez, J. C. Huegel, and E. Broitman, "Tribocorrosion Behavior and Ions Release of CoCrMo Alloy Coated with a $TiAlVCN/CN_x$ Multilayer in Simulated Body Fluid Plus Bovine Serum Albumin," Tribol. Int., 81 159-68 (2015).   DOI
27 S. V. Dorozhkin and M. Epple, "Biological and Medical Significance of Calcium Phosphates," Angew. Chem., Int. Ed., 41 [17] 3130-46 (2002).   DOI
28 H. Q. Cao, L. Zhang, H. Zheng, and Z. Wang, "Hydroxyapatite Nanocrystals for Biomedical Applications," J. Phys. Chem. C, 114 [43] 18352-57 (2010).   DOI
29 D. A. Mbeh, R. Franaca, Y. Merhi, X. F. Zhang, T. Veres, E. Sacher, and L. Yahia, "In vitro Biocompatibility Assessment of Functionalized Magnetite Nanoparticles: Biological and Cytotoxicological Effects," J. Biomed. Mater. Res., Part A, 100 [6] 1637-46 (2012).   DOI
30 D. Richards and A. Ivanisevic, "Inorganic Material Coatings and Their Effect on Cytotoxicity," Chem. Soc. Rev., 41 [6] 2052-60 (2012).   DOI
31 T. V. Kolekar, N. D. Thorat, H. M. Yadav, V. T. Magalad, M. A. Shinde, S. S. Bandgar, J. H. Kim, and G. L. Agawane, "Nanocrystalline Hydroxyapatite Doped with Aluminium: A Potential Carrier for Biomedical Applications," Ceram. Int., 42 [4] 5304-11 (2016).   DOI
32 M. Zhifang, B. Jing, W. Yichen, and J. Xiue, "Impact of Shape and Pore Size of Mesoporous Silica Nanoparticles on Serum Protein Adsorption and RBCs Hemolysis," ACS. Appl. Mater. Interfaces, 6 [4] 2431-38 (2014).   DOI
33 P. T. Kashmira, S. C. Kiran, S. T. Vrinda, and J. J. Mihir, "Pure and Zinc Doped Nano-Hydroxyapatite: Synthesis, Characterization, Antimicrobial and Hemolytic Studies," J. Cryst. Growth., 401 474-79 (2014).   DOI