References
- L. L. Hench, "Bioceramics," J. Am. Ceram. Soc., 81 [7] 1705-28 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02540.x
- S. V. Dorozhkin, "A Detailed History of Calcium Orthophosphates from 1770s till 1950," Mater. Sci. Eng., C, 33 [6] 3085-110 (2013). https://doi.org/10.1016/j.msec.2013.04.002
- S. V. Dorozhkin and M. Epple, "Biological and Medical Significance of Calcium Phosphates," Angew. Chem., Int. Ed., 41 [17] 3130-46 (2002). https://doi.org/10.1002/1521-3773(20020902)41:17<3130::AID-ANIE3130>3.0.CO;2-1
- H. Q. Cao, L. Zhang, H. Zheng, and Z. Wang, "Hydroxyapatite Nanocrystals for Biomedical Applications," J. Phys. Chem. C, 114 [43] 18352-57 (2010). https://doi.org/10.1021/jp106078b
- E. S. Ahn, N. J. Gleason, A. Nakahira, and J. Y. Ying, "Nanostructure Processing of Hydroxyapatite-Based Bioceramics," Nano Lett., 1 [3] 149-53 (2001). https://doi.org/10.1021/nl0055299
- D. Tanaskovic, B. Jokic, G. Socol, A. Popescu, I. N. Mihailescu, R. Petrovic, and D. Janackovic, "Synthesis of Functionally Graded Bioactive Glass-Apatite Multistructures on Ti Substrates by Pulsed Laser Deposition," Appl. Surf. Sci., 254 [4] 1279-82 (2007). https://doi.org/10.1016/j.apsusc.2007.08.009
- K. Hayashi, T. Mashima, and K. Uenoyama, "The Effect of Hydroxyapatite Coating on Bony Ingrowth into Grooved Titanium Implants," Biomaterials, 20 [2] 111-19 (1999). https://doi.org/10.1016/S0142-9612(98)00011-8
- H. F. Morris and S. Ocbi, "Hydroxyapatite-Coated Implants: A Case for Their Use," J. Oral Maxillofac. Surg., 56 [11] 1303-13 (1998). https://doi.org/10.1016/S0278-2391(98)90615-2
- H. Zhou and J. Lee, "Nanoscale Hydroxyapatite Particles for Bone Tissue Engineering," Acta Biomater., 7 [7] 2769-81 (2011). https://doi.org/10.1016/j.actbio.2011.03.019
- C. J. Chung, R. T. Su, H. J. Chu, H. T. Chen, H. K. Tsou, and J. L. He, "Plasma Electrolytic Oxidation of Titanium and Improvement in Osseointegration," J. Biomed. Mater. Res., Part B, 101 [6] 1023-30 (2013).
- Y. Tanaka, Y. Hirata, and R. Yoshinaka, "Synthesis and Characteristics of Ultrafine Hydroxyapatite Particles," J. Ceram. Process. Res., 4 [4] 197-201 (2003).
- I. Smiciklas, A. Onjia, J. Markovic, and S. Raicevic, "Comparison of Hydroxyapatite Sorption Properties towards Cadmium, Lead, Zinc and Strontium Ions," Mater. Sci. Forum, 494 405-10 (2005). https://doi.org/10.4028/www.scientific.net/MSF.494.405
- R. Z. LeGeros, "Calcium Phosphate-Based Osteoinductive Materials," Chem. Rev., 108 [11] 4742-53 (2008). https://doi.org/10.1021/cr800427g
- E. D. Berry and G. R. Siragusa, "Hydroxyapatite Adherence as a Means to Concentrate Bacteria," Appl. Environ. Microbiol., 63 [10] 4069-74 (1997).
- M. Niinomi, M. Nakai, and J. Hieda, "Development of New Metallic Alloys for Biomedical Applications," Acta Biomater., 8 [11] 3888-903 (2012). https://doi.org/10.1016/j.actbio.2012.06.037
- K. S. Oh, K. J. Kim, Y. K. Jeong, and Y. H. Choa, "Effect of Fabrication Processes on the Antimicrobial Properties of Silver Doped Nano-Sized Hap," Key Eng. Mater., 240 583- 86 (2003).
- M. Wakamura, K. Kandori, and T. ishikawa, "Surface Structure and Composition of Calcium Hydroxyapatites Substituted with Al(III), La(III) and Fe(III) Ions," Colloids Surf., A, 164 [2] 297-305 (2000). https://doi.org/10.1016/S0927-7757(99)00384-2
-
B. Alemon, M. Flores, W. Ramirez, J. C. Huegel, and E. Broitman, "Tribocorrosion Behavior and Ions Release of CoCrMo Alloy Coated with a
$TiAlVCN/CN_x$ Multilayer in Simulated Body Fluid Plus Bovine Serum Albumin," Tribol. Int., 81 159-68 (2015). https://doi.org/10.1016/j.triboint.2014.08.011 - W. Brodner, P. Bitzan, V. Meisinger, A. Kaider, F. Gottsauner- Wolf, and R. Kotz, "Elevated Serum Cobalt with Metal-on- Metal Articulating Surfaces," J. Bone Jt. Surg., Br. Vol., 79 [2] 16-21 (1997).
- P. Collery, Y. Maymard, T. Theophanides, L. Khassanova, and T. Collery, "Metal Ions in Biology," J. John Libbey: New Barnet, 10 739-42 (2008).
- S. A. Katz and H. Salem, "The Toxicology of Chromium with Respect to its Chemical Speciation: A Review," J. Appl. Toxicol., 13 [3] 217-24 (1993). https://doi.org/10.1002/jat.2550130314
- G. Mabilleau, R. Filmon, P. K. Petrov, M. F. Basle, A. Sabokbar, and D. Chappard, "Cobalt, Chromium and Nickel Affect Hydroxyapatite Crystal Growth in vitro," Acta Biomater., 6 [4] 1555-60 (2010). https://doi.org/10.1016/j.actbio.2009.10.035
- J. Devoya, A. Gehinb, S. Mullera, M. Melczera, A. Remya, G. Antoinea, and I. Sponnec, "Evaluation of Chromium in Red Blood Cells as an Indicator of Exposure to Hexavalent Chromium: An in vitro Study," Toxicol. Lett., 255 63-70 (2016). https://doi.org/10.1016/j.toxlet.2016.05.008
-
H. M. Yadav, T. V. Kolekar, A. S. Barge, N. D. Thorat, S. D. Delekar, B. M. Kim, B. J. Kim, and J. S. Kim, "Enhanced Visible Light Photocatalytic Activity of
$Cr^{3+}$ -Doped Anatase$TiO_2$ Nanoparticles Synthesized by Sol-Gel Method," J. Mater. Sci.: Mater. Electron., 27 [1] 526-34 (2016). https://doi.org/10.1007/s10854-015-3785-6 - M. J. Phillips, J. A. Darr, Z. B. Luklinska, and I. Rehman, "Synthesis and Characterization of Nano-Biomaterials with Potential Osteological Applications," J. Mater. Sci.: Mater. Med., 14 [10] 875-82 (2003). https://doi.org/10.1023/A:1025682626383
- T. Metanawin, T. Tang, R. Chen, D. Vernon, and X. Wang, "Cytotoxicity and Photocytotoxicity of Structure-Defined Water-Soluble C60/Micelle Supramolecular Nanoparticles," Nanotechnology, 22 [23] 235-39 (2011).
- H. Yin, P. S. Casey, M. J. McCall, and M. Fenech, "Effects of Surface Chemistry on Cytotoxicity, Genotoxicity, and the Generation of Reactive Oxygen Species Induced by ZnO Nanoparticles," Langmuir, 26 [19] 15399-408 (2010). https://doi.org/10.1021/la101033n
- K. C. Barick, S. Singh, N. V. Jadhav, D. Bahadur, B. N. Pandey, and P. A. Hassan, "pH-Responsive Peptide Mimic Shell Cross-Linked Magnetic Nanocarriers for Combination Therapy," Adv. Funct. Mater, 22 [23] 4975-84 (2012). https://doi.org/10.1002/adfm.201201140
- D. A. Mbeh, R. Franaca, Y. Merhi, X. F. Zhang, T. Veres, E. Sacher, and L. Yahia, "In vitro Biocompatibility Assessment of Functionalized Magnetite Nanoparticles: Biological and Cytotoxicological Effects," J. Biomed. Mater. Res., Part A, 100 [6] 1637-46 (2012). https://doi.org/10.1002/jbm.a.34096
- D. Richards and A. Ivanisevic, "Inorganic Material Coatings and Their Effect on Cytotoxicity," Chem. Soc. Rev., 41 [6] 2052-60 (2012). https://doi.org/10.1039/C1CS15252A
- T. V. Kolekar, N. D. Thorat, H. M. Yadav, V. T. Magalad, M. A. Shinde, S. S. Bandgar, J. H. Kim, and G. L. Agawane, "Nanocrystalline Hydroxyapatite Doped with Aluminium: A Potential Carrier for Biomedical Applications," Ceram. Int., 42 [4] 5304-11 (2016). https://doi.org/10.1016/j.ceramint.2015.12.060
- P. T. Kashmira, S. C. Kiran, S. T. Vrinda, and J. J. Mihir, "Pure and Zinc Doped Nano-Hydroxyapatite: Synthesis, Characterization, Antimicrobial and Hemolytic Studies," J. Cryst. Growth., 401 474-79 (2014). https://doi.org/10.1016/j.jcrysgro.2014.01.062
- M. Zhifang, B. Jing, W. Yichen, and J. Xiue, "Impact of Shape and Pore Size of Mesoporous Silica Nanoparticles on Serum Protein Adsorption and RBCs Hemolysis," ACS. Appl. Mater. Interfaces, 6 [4] 2431-38 (2014). https://doi.org/10.1021/am404860q
Cited by
- Cationic Substitutions in Hydroxyapatite: Current Status of the Derived Biofunctional Effects and Their In Vitro Interrogation Methods vol.11, pp.11, 2018, https://doi.org/10.3390/ma11112081
- Functional Layered Double Hydroxide Nanohybrids for Biomedical Imaging vol.9, pp.10, 2017, https://doi.org/10.3390/nano9101404
- Antibacterial potential of biomaterial derived nanoparticles for drug delivery application vol.6, pp.12, 2017, https://doi.org/10.1088/2053-1591/ab715d
- Layered Double Hydroxide Nanomaterials: Biomedical Applications, Current Status and Challenges vol.11, pp.3, 2017, https://doi.org/10.1142/s1793984421300089