DOI QR코드

DOI QR Code

Enhanced Hemolytic Biocompatibility of Hydroxyapatite by Chromium (Cr3+) Doping in Hydroxyapatite Nanoparticles Synthesized by Solution Combustion Method

  • Bandgar, Sneha S. (Department of Chemistry, Lal Bahadur Shastri College) ;
  • Yadav, Hemraj M. (Department of Energy and Materials Engineering, Dongguk University of Seoul) ;
  • Shirguppikar, Shailesh S. (Rajaram Bapu institute of Technology) ;
  • Shinde, Mahesh A (Rajaram Bapu institute of Technology) ;
  • Shejawal, Rajendra V. (Department of Chemistry, Lal Bahadur Shastri College) ;
  • Kolekar, Tanaji V. (Rajaram Bapu institute of Technology) ;
  • Bamane, Sambhaji R. (Department of Chemistry, R.S.B. Mahavidyalaya)
  • Received : 2017.02.02
  • Accepted : 2017.03.03
  • Published : 2017.03.31

Abstract

For the better success of biomedical implant surgery, we used a modified solution combustion method to synthesize Hydroxyapatite (HA) and Chromium ($Cr^{3+}$) modified Cr-HA with different concentrations of 0.5, 1.0, 1.5, 2.0 and 2.5. The Cr-HA nanopowder was characterized by TGA, XRD, SEM-EDS and TEM. The HA and Cr-HA powders were subjected to in vitro biological studies to determine their biocompatibility and hemocompatibility. The cytotoxicity of HA and Cr-HA were evaluated on Hela (Cervical cancer) cells and L929 (mouse fibroblast) cells by using MTT assay. Hemocompatibility studies demonstrated a noticeable haemolytic ratio below 5%, which confirms that these materials are compatible in nature with human blood. The results of the present work confirm that the synthesised HA and Cr-HA are biocompatible and can be extensively used in the biomedical field to improve overall material biological properties.

Keywords

References

  1. L. L. Hench, "Bioceramics," J. Am. Ceram. Soc., 81 [7] 1705-28 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02540.x
  2. S. V. Dorozhkin, "A Detailed History of Calcium Orthophosphates from 1770s till 1950," Mater. Sci. Eng., C, 33 [6] 3085-110 (2013). https://doi.org/10.1016/j.msec.2013.04.002
  3. S. V. Dorozhkin and M. Epple, "Biological and Medical Significance of Calcium Phosphates," Angew. Chem., Int. Ed., 41 [17] 3130-46 (2002). https://doi.org/10.1002/1521-3773(20020902)41:17<3130::AID-ANIE3130>3.0.CO;2-1
  4. H. Q. Cao, L. Zhang, H. Zheng, and Z. Wang, "Hydroxyapatite Nanocrystals for Biomedical Applications," J. Phys. Chem. C, 114 [43] 18352-57 (2010). https://doi.org/10.1021/jp106078b
  5. E. S. Ahn, N. J. Gleason, A. Nakahira, and J. Y. Ying, "Nanostructure Processing of Hydroxyapatite-Based Bioceramics," Nano Lett., 1 [3] 149-53 (2001). https://doi.org/10.1021/nl0055299
  6. D. Tanaskovic, B. Jokic, G. Socol, A. Popescu, I. N. Mihailescu, R. Petrovic, and D. Janackovic, "Synthesis of Functionally Graded Bioactive Glass-Apatite Multistructures on Ti Substrates by Pulsed Laser Deposition," Appl. Surf. Sci., 254 [4] 1279-82 (2007). https://doi.org/10.1016/j.apsusc.2007.08.009
  7. K. Hayashi, T. Mashima, and K. Uenoyama, "The Effect of Hydroxyapatite Coating on Bony Ingrowth into Grooved Titanium Implants," Biomaterials, 20 [2] 111-19 (1999). https://doi.org/10.1016/S0142-9612(98)00011-8
  8. H. F. Morris and S. Ocbi, "Hydroxyapatite-Coated Implants: A Case for Their Use," J. Oral Maxillofac. Surg., 56 [11] 1303-13 (1998). https://doi.org/10.1016/S0278-2391(98)90615-2
  9. H. Zhou and J. Lee, "Nanoscale Hydroxyapatite Particles for Bone Tissue Engineering," Acta Biomater., 7 [7] 2769-81 (2011). https://doi.org/10.1016/j.actbio.2011.03.019
  10. C. J. Chung, R. T. Su, H. J. Chu, H. T. Chen, H. K. Tsou, and J. L. He, "Plasma Electrolytic Oxidation of Titanium and Improvement in Osseointegration," J. Biomed. Mater. Res., Part B, 101 [6] 1023-30 (2013).
  11. Y. Tanaka, Y. Hirata, and R. Yoshinaka, "Synthesis and Characteristics of Ultrafine Hydroxyapatite Particles," J. Ceram. Process. Res., 4 [4] 197-201 (2003).
  12. I. Smiciklas, A. Onjia, J. Markovic, and S. Raicevic, "Comparison of Hydroxyapatite Sorption Properties towards Cadmium, Lead, Zinc and Strontium Ions," Mater. Sci. Forum, 494 405-10 (2005). https://doi.org/10.4028/www.scientific.net/MSF.494.405
  13. R. Z. LeGeros, "Calcium Phosphate-Based Osteoinductive Materials," Chem. Rev., 108 [11] 4742-53 (2008). https://doi.org/10.1021/cr800427g
  14. E. D. Berry and G. R. Siragusa, "Hydroxyapatite Adherence as a Means to Concentrate Bacteria," Appl. Environ. Microbiol., 63 [10] 4069-74 (1997).
  15. M. Niinomi, M. Nakai, and J. Hieda, "Development of New Metallic Alloys for Biomedical Applications," Acta Biomater., 8 [11] 3888-903 (2012). https://doi.org/10.1016/j.actbio.2012.06.037
  16. K. S. Oh, K. J. Kim, Y. K. Jeong, and Y. H. Choa, "Effect of Fabrication Processes on the Antimicrobial Properties of Silver Doped Nano-Sized Hap," Key Eng. Mater., 240 583- 86 (2003).
  17. M. Wakamura, K. Kandori, and T. ishikawa, "Surface Structure and Composition of Calcium Hydroxyapatites Substituted with Al(III), La(III) and Fe(III) Ions," Colloids Surf., A, 164 [2] 297-305 (2000). https://doi.org/10.1016/S0927-7757(99)00384-2
  18. B. Alemon, M. Flores, W. Ramirez, J. C. Huegel, and E. Broitman, "Tribocorrosion Behavior and Ions Release of CoCrMo Alloy Coated with a $TiAlVCN/CN_x$ Multilayer in Simulated Body Fluid Plus Bovine Serum Albumin," Tribol. Int., 81 159-68 (2015). https://doi.org/10.1016/j.triboint.2014.08.011
  19. W. Brodner, P. Bitzan, V. Meisinger, A. Kaider, F. Gottsauner- Wolf, and R. Kotz, "Elevated Serum Cobalt with Metal-on- Metal Articulating Surfaces," J. Bone Jt. Surg., Br. Vol., 79 [2] 16-21 (1997).
  20. P. Collery, Y. Maymard, T. Theophanides, L. Khassanova, and T. Collery, "Metal Ions in Biology," J. John Libbey: New Barnet, 10 739-42 (2008).
  21. S. A. Katz and H. Salem, "The Toxicology of Chromium with Respect to its Chemical Speciation: A Review," J. Appl. Toxicol., 13 [3] 217-24 (1993). https://doi.org/10.1002/jat.2550130314
  22. G. Mabilleau, R. Filmon, P. K. Petrov, M. F. Basle, A. Sabokbar, and D. Chappard, "Cobalt, Chromium and Nickel Affect Hydroxyapatite Crystal Growth in vitro," Acta Biomater., 6 [4] 1555-60 (2010). https://doi.org/10.1016/j.actbio.2009.10.035
  23. J. Devoya, A. Gehinb, S. Mullera, M. Melczera, A. Remya, G. Antoinea, and I. Sponnec, "Evaluation of Chromium in Red Blood Cells as an Indicator of Exposure to Hexavalent Chromium: An in vitro Study," Toxicol. Lett., 255 63-70 (2016). https://doi.org/10.1016/j.toxlet.2016.05.008
  24. H. M. Yadav, T. V. Kolekar, A. S. Barge, N. D. Thorat, S. D. Delekar, B. M. Kim, B. J. Kim, and J. S. Kim, "Enhanced Visible Light Photocatalytic Activity of $Cr^{3+}$-Doped Anatase $TiO_2$ Nanoparticles Synthesized by Sol-Gel Method," J. Mater. Sci.: Mater. Electron., 27 [1] 526-34 (2016). https://doi.org/10.1007/s10854-015-3785-6
  25. M. J. Phillips, J. A. Darr, Z. B. Luklinska, and I. Rehman, "Synthesis and Characterization of Nano-Biomaterials with Potential Osteological Applications," J. Mater. Sci.: Mater. Med., 14 [10] 875-82 (2003). https://doi.org/10.1023/A:1025682626383
  26. T. Metanawin, T. Tang, R. Chen, D. Vernon, and X. Wang, "Cytotoxicity and Photocytotoxicity of Structure-Defined Water-Soluble C60/Micelle Supramolecular Nanoparticles," Nanotechnology, 22 [23] 235-39 (2011).
  27. H. Yin, P. S. Casey, M. J. McCall, and M. Fenech, "Effects of Surface Chemistry on Cytotoxicity, Genotoxicity, and the Generation of Reactive Oxygen Species Induced by ZnO Nanoparticles," Langmuir, 26 [19] 15399-408 (2010). https://doi.org/10.1021/la101033n
  28. K. C. Barick, S. Singh, N. V. Jadhav, D. Bahadur, B. N. Pandey, and P. A. Hassan, "pH-Responsive Peptide Mimic Shell Cross-Linked Magnetic Nanocarriers for Combination Therapy," Adv. Funct. Mater, 22 [23] 4975-84 (2012). https://doi.org/10.1002/adfm.201201140
  29. D. A. Mbeh, R. Franaca, Y. Merhi, X. F. Zhang, T. Veres, E. Sacher, and L. Yahia, "In vitro Biocompatibility Assessment of Functionalized Magnetite Nanoparticles: Biological and Cytotoxicological Effects," J. Biomed. Mater. Res., Part A, 100 [6] 1637-46 (2012). https://doi.org/10.1002/jbm.a.34096
  30. D. Richards and A. Ivanisevic, "Inorganic Material Coatings and Their Effect on Cytotoxicity," Chem. Soc. Rev., 41 [6] 2052-60 (2012). https://doi.org/10.1039/C1CS15252A
  31. T. V. Kolekar, N. D. Thorat, H. M. Yadav, V. T. Magalad, M. A. Shinde, S. S. Bandgar, J. H. Kim, and G. L. Agawane, "Nanocrystalline Hydroxyapatite Doped with Aluminium: A Potential Carrier for Biomedical Applications," Ceram. Int., 42 [4] 5304-11 (2016). https://doi.org/10.1016/j.ceramint.2015.12.060
  32. P. T. Kashmira, S. C. Kiran, S. T. Vrinda, and J. J. Mihir, "Pure and Zinc Doped Nano-Hydroxyapatite: Synthesis, Characterization, Antimicrobial and Hemolytic Studies," J. Cryst. Growth., 401 474-79 (2014). https://doi.org/10.1016/j.jcrysgro.2014.01.062
  33. M. Zhifang, B. Jing, W. Yichen, and J. Xiue, "Impact of Shape and Pore Size of Mesoporous Silica Nanoparticles on Serum Protein Adsorption and RBCs Hemolysis," ACS. Appl. Mater. Interfaces, 6 [4] 2431-38 (2014). https://doi.org/10.1021/am404860q

Cited by

  1. Cationic Substitutions in Hydroxyapatite: Current Status of the Derived Biofunctional Effects and Their In Vitro Interrogation Methods vol.11, pp.11, 2018, https://doi.org/10.3390/ma11112081
  2. Functional Layered Double Hydroxide Nanohybrids for Biomedical Imaging vol.9, pp.10, 2017, https://doi.org/10.3390/nano9101404
  3. Antibacterial potential of biomaterial derived nanoparticles for drug delivery application vol.6, pp.12, 2017, https://doi.org/10.1088/2053-1591/ab715d
  4. Layered Double Hydroxide Nanomaterials: Biomedical Applications, Current Status and Challenges vol.11, pp.3, 2017, https://doi.org/10.1142/s1793984421300089