• Title/Summary/Keyword: Biocompatibility materials

Search Result 406, Processing Time 0.024 seconds

Comparison of PEO Coating Layer of AZ31 Alloy Surface according to EDTA Contained in Electrolytic Solution (전해 용액에 포함된 EDTA에 따른 AZ31 합금 표면의 PEO 코팅 층 비교)

  • Woo, Jin-Ju;Kim, Min-Soo;Koo, Bon-Heun
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.185-190
    • /
    • 2020
  • Titanium is widely used as an implant material due to its excellent biocompatibility, but has a problem due to high cost and high Young's modulus compared to bone. Magnesium alloy is attracting attention as a material to replace it. Magnesium alloy, like titanium, has excellent biocompatibility and has a Young's modulus similar to that of bone. However, there are corrosion resistance problems due to corrosion, and various surface treatment methods are being studied to solve them. In this study, the ceramic coating layer was grown on the surface of the AZ31 magnesium alloy in an electrolytic solution containing EDTA, and the properties of the formed coating were analyzed through SEM and XRD to analyze the microstructure and shape, and measured the micro hardness of the coating layer. Corrosion properties in the body were evaluated through a corrosion test in SBF solution, a component similar to blood plasma.

Characteristics of Lecithin-adsorbed Magnetic Nanoparticle and Biocompatibility of Its Fluid (Lecithin이 흡착된 나노 자성입자의 특성과 그 자성유체의 생체 친화성)

  • Park, Sang-Im;Kim, Chong-Oh;Kim, Jong-Hee;Kim, Seong-Min;Kim, Keun-Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.6
    • /
    • pp.293-299
    • /
    • 2006
  • Magnetic nanoparticles were prepared by thermal decomposition and adsorbed with lecithin by applying ultrasonic. The size and saturation magnetization of magnetic nanoparticles were observed with different lecithin concentration, and the maximum tolerated dose (HTD) and toxicity of magnetic fluid was investigated through a biological test. The thickness of lecithin-adsorption layer increased non-linearly with increasing amounts of added lecithin, and the desirable adsorption amount was observed in the lecithin concentration of 20%(w/v). The dispersibility and magnetic properties of lecithin-adsorbed magnetic nanoparticles were most excellent when the ultrasonic exposure time was 1.5h. Also, the maximum tolerated concentration with best cell viability was $32{\mu}g/ml$ in vitro test, and lecithin-adsorbed magnetic fluids improved the biocompatibility by 1.2 times compared with bare magnetite fluids in vivo.

Novel Biodegradable Polyester Based on Saccharides (사카라이드로부터 제조한 새로운 생분해성 폴리에스테르)

  • Joo, Sang-Gee;Park, Chong-Rae
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.301-302
    • /
    • 2003
  • Recently, synthetic polymers containing units of carbohydrate derivatives with pendatnt functional groups have been much studied. The polymers should be able to be used drug carriers and scaffold for tissue engineering, because of their nontoxicity, biocompatibility, and biodegradability.$\^$1-6/ During the last three decades, various polyfunctional polymers, e.g. polyhydroxypolyamides and polyesteramides, based on carbohydrates have been reported and synthesized by condensation polymerization between sugar derivative and diamines, although it could be done via complicated reaction routes going through protecting.$\^$1-6/ (omitted)

  • PDF

A Comparative Study on Corrosion Behavior of Ti-35Nb-5Ta-7Zr, Ti-6Al-4V and CP-Ti in 0.9 wt% NaCl

  • Saji, Viswanathan S.;Jeong, Yong Hoon;Choe, Han Cheol
    • Corrosion Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.139-142
    • /
    • 2009
  • Recently, quaternary titanium alloys of the system Ti-Nb-Ta-Zr received considerable research interest as potential implant materials because of their excellent mechanical properties and biocompatibility. However, only few reported works were available on the corrosion behavior of such alloys. Hence, in the present work, electrochemical corrosion of Ti-35Nb-5Ta-7Zr alloy, which has been fabricated by arc melting and heat treatment, was studied in 0.9 wt% NaCl at $37\pm1^{\circ}C$, along with biomedical grade Ti-6Al-4V and CP-Ti. The phase and microstructure of the alloys were investigated employing XRD and SEM. The results of electrochemical studies indicated that the corrosion resistance of the quaternary alloy was inferior to that of Ti-6Al-4V and CP Ti.

Inorganic Materials and Process for Bioresorbable Electronics

  • Seo, Min-Ho;Jo, Seongbin;Koo, Jahyun
    • Journal of Semiconductor Engineering
    • /
    • v.1 no.1
    • /
    • pp.46-56
    • /
    • 2020
  • This article highlights new opportunities of inorganic semiconductor materials for bio-implantable electronics, as a subset of 'transient' technology defined by an ability to physically dissolve, chemically degrade, or disintegrate in a controlled manner. Concepts of foundational materials for this area of technology with historical background start with the dissolution chemistry and reaction kinetics associated with hydrolysis of nanoscale silicon surface as a function of temperature and pH level. The following section covers biocompatibility of silicon, including related other semiconductor materials. Recent transient demonstrations of components and device levels for bioresorbable implantation enable the future direction of the transient electronics, as temporary implanters and other medical devices that provide important diagnosis and precisely personalized therapies. A final section outlines recent bioresorbable applications for sensing various biophysical parameters, monitoring electrophysiological activities, and delivering therapeutic signals in a programmed manner.

Tissue and Immune Responses on Implanted Nanostructured Biomaterials

  • Khang, Dong-Woo;Kang, Sang-Soo;Nam, Tae-Hyun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.47.1-47.1
    • /
    • 2009
  • Nanostructured biomaterials have increased those potential for utilizing in many medical applications. In this study, benefit of nanotechnology for the response with biological targets will be described in terms of size, effective surface area and surface energy (physical aspect). Also, correlations between physical and biological interactions (greater protein adsorption on nano surface roughness) will be discussed for understanding biocompatibility of nanostructured biomaterials including carbon nanotube composites and nanostructured titanium surfaces. In the application parts, various major tissue cells, such as bone, cartilage, vascular and bladder cell responses will be discussed with suggested nanomaterials. Lastly, immune responses with macrophage (adhesion and several major cytokines) on nanostructured biomaterials will be described for evasive immune response.

  • PDF

Mechanical properties, Biodegradability and Biocompatibility of Coronary Bypass Artery with PCL Layer and PLGA/Chitosan Mats Using Electrospinning

  • Nguyen, Thi-Hiep;Min, Young-Ki;Yang, Hun-Mo;Song, Ho-Yeon;Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.45.2-45.2
    • /
    • 2009
  • A coronary graft fabricated from PLGA poly (lactic-co-glycolic acid) and chitosan electros puns deposited on poly caprolactone (PCL) electro spun tube. Mechanical properties of tube were evaluated through extruder machine depending on thickness of vessel wall. Biocompatible properties were evaluated by SEM morphology, amount of cell counting and MTT assay method for depending on culture days (1, 3, 5 days). MTT assay, counting cell and SEM morphology showed that cells were fast growth and immigration after 5 days. Biodegradability was monitored through loss weigh method for incubator days.

  • PDF

Trend on Materials Technologies for Environmetally-friendly Biodegradable Electronics (친환경 생분해성 일렉트로닉스 소재기술 동향)

  • Kim, Joong-Kwon;Shin, Gunchul;Jin, Jungho
    • Prospectives of Industrial Chemistry
    • /
    • v.22 no.2
    • /
    • pp.13-24
    • /
    • 2019
  • 최근 짧아진 전자 기기의 수명에 따른 전자 폐기물이 환경에 미치는 부정적인 영향이 세계적인 문제점으로 주목받고 있다. 이와 같은 문제를 해결하기 위하여 전자 제품에 사용되는 생분해성, 안정성 및 무독성이 입증된 유기 재료 개발에 대한 다양한 방법이 검토되고 있으며 이러한 유기 재료의 특징들은 생체 전자 기기에도 유용할 수 있다. 따라서 본 기고문에서는 전자 폐기물로부터 야기되는 여러 문제를 해결하기 위해 생분해성, 안정성 및 무독성의 특성을 갖는 친환경 전자 기기 소재기술 개발 동향에 대해 알아보고자 한다.

Antibacterial Properties of TiAgN and ZrAgN Thin Film Coated by Physical Vapor Deposition for Medical Applications

  • Kang, Byeong-Mo;Lim, Yeong-Seog;Jeong, Woon-Jo;Kang, Byung-Woo;Ahn, Ho-Geun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.5
    • /
    • pp.275-278
    • /
    • 2014
  • We deposited TiAgN and ZrAgN nanocomposite coatings on pure Titanium specimens, by using arc ion plating (AIP) with single alloy targets. TiAg ZrAg alloy targets of 5 wt.%, 10 wt.% silver content by vacuum arc remelting (VAR), followed by homogenization for 2 hours at $1,100^{\circ}C$ in non-active Ar gas atmosphere and characterized these samples for morphology and chemical composition. We investigated the biocompatibility of TiAg and ZrAg alloys by examining the proliferation of L929 fibroblast cells by MTT test assay, after culturing the cells ($4{\times}10^4cells/cm^2$) for 24 hours; and exploring the antibacterial properties of thin films by culturing Streptococus Mutans (KCTC3065), using paper disk techniques. Our results showed no cytotoxic effects in any of the specimens, but the antibacterial effects against Streptococus Mutans appeared only in the 10 wt.% silver content specimens.

Fabrication and Cell Culturing on Carbon Nanofibers/Nanoparticles Reinforced Membranes for Bone-Tissue Regeneration

  • Deng, Xu Liang;Yang, Xiao Ping
    • Carbon letters
    • /
    • v.13 no.3
    • /
    • pp.139-150
    • /
    • 2012
  • Poly-L-lactic acid (PLLA), PLLA/hydroxyapatite (HA), PLLA/multiwalled carbon nanotubes (MWNTs)/HA, PLLA/trifluoroethanol (TFE), PLLA/gelatin, and carbon nanofibers (CNFs)/${\beta}$-tricalcium phosphate (${\beta}$-TCP) composite membranes (scaffolds) were fabricated by electrospinning and their morphologies, and mechanical properties were characterized for use in bone tissue regeneration/guided tissue regeneration. MWNTs and HA nanoparticles were well distributed in the membranes and the degradation characteristics were improved. PLLA/MWNTs/HA membranes enhanced the adhesion and proliferation of periodontal ligament cells (PDLCs) by 30% and inhibited the adhesion of gingival epithelial cells by 30%. Osteoblast-like MG-63 cells on the randomly fiber oriented PLLA/TEF membrane showed irregular forms, while the cells exhibited shuttle-like shapes on the parallel fiber oriented membrane. Classical supersaturated simulated body fluids were modified by $CO_2$ bubbling and applied to promote the biomineralization of the PLLA/gelatin membrane; this resulted in predictions of bone bonding bioactivity of the substrates. The ${\beta}$-TCP membranes exhibit good biocompatibility, have an effect on PDLC growth comparable to that of pure CNF membrane, and can be applied as scaffolds for bone tissue regeneration.