• 제목/요약/키워드: Biochemical Methane Potential

검색결과 76건 처리시간 0.023초

Effect of Organic Content on Anaerobic Biodegradability by Agricultural Waste Biomass

  • Shin, Kook-Sik;Yoon, Young-Man;Sonn, Yeon-Kyu
    • 한국토양비료학회지
    • /
    • 제47권3호
    • /
    • pp.155-164
    • /
    • 2014
  • Recently interest on production of biogas from biomass resources has increased because of climate change in worldwide. In this study, anaerobic digestion efficiency of 17 different types of agricultural waste was evaluated using biochemical methane production potential estimated from the International biochemical methane potential standard method (Germany VDI4630). As a result, theoretical biochemical methane potential ($B_{th}$) of agricultural waste biomass ranged from 0.266 to $0.488Nm^3kg^{-1}$-Volatile Solid $(VS)_{added}$. Ultimate biochemical methane potential ($B_u$) of agricultural waste biomass ranged between 0.176 and $0.417Nm^3kg^{-1}-VS_{added}$. The agricultural waste biomass anaerobic biodegradability with $B_u/B_{th}$ and VDI4630 determined by VS contents was 36.0~95.9% and 30.8~91.1%, respectively. Ultimate methane potential and anaerobic biodegradability given by the VS term showed more reasonable results.

생선 폐기물의 혐기성 소화 처리(II) : Biochemical Methane Potential을 이용한 생분해도 평가 (Anaerobic Digestion of Fish Offal(II) : Evaluation of Biodegradability Using Biochemical Methane Potential)

  • 정병곤
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제9권3호
    • /
    • pp.154-159
    • /
    • 2006
  • 본 연구에서는 생선폐기물의 혐기성 소화처리를 위한 생선폐기물의 혐기성 생분해 특성을 평가하기 위해 serum bottle을 이용한 BMP(Biochemical Methane Potential) test를 수행하였다. 어판장에서 배출되는 생선폐기물 중 고등어 손질 시 발생되는 폐기물 중 내장을 제외한 부분과 갈치손질 시 발생되는 폐기물 중 내장을 제외한 부분, 생선손질 시 발생되는 내장류 3개 군을 실험대상 기질로 선정하여 사용하였다. 각각의 생선폐기물들을 분쇄 후 serum bottle에 11 50 ml, 100 ml, 150 ml씩 혐기적으로 넣은 다음 BMP test를 실시하였으며 실험의 정확도를 위하여 동일 시료에 대하여 3개씩 중복으로 조제하여 실험하였다. 배양시간에 따른 누적 메탄가스 생성량과 메탄생성속도를 평가하였다. 이들 값들은 기질의 특성에 따라 다르기는 하나 통상 휘발성 고형물 (Volatiles Solids: VS) 1 kg당 420-470 ml의 메탄가스를 생성하는 것으로 나타났다. 기질 종류별로 볼 경우 갈치와 고등어군에 비하여 내장 군이 고형물 단위 중량당 메탄발생량과 분해속도 측면에서 모두 높은 것으로 나타났다. 대상 시료에 대해 원소분석을 실시한 결과, C/N비는 5.2로 나타났다. 원소분석 자료를 근거로 계산한 이론적인 최종 메탄생성량은 $522ml{\cdot}CH_4/g{\cdot}VS$로 나타났다. 이를 본 실험에서 구한 실제 최종 메탄생성량과 비교해 볼 때 생분해도는 0.847로 평가되었다.

  • PDF

Effects of hydrothermal pretreatment on methane potential of anaerobic digestion sludge cake of cattle manure containing sawdust as bedding materials

  • Jun-Hyeong Lee;Chang-Hyun Kim;Young-Man Yoon
    • Animal Bioscience
    • /
    • 제36권5호
    • /
    • pp.818-828
    • /
    • 2023
  • Objective: The purpose of this study was to analyze the effect of the hydrothermal pretreatment of anaerobic digestion sludge cake (ADSC) of cattle manure on the solubilization of organic matter and the methane yield to improve the anaerobic digestion efficiency of cattle manure collected from the sawdust pens of cattle. Methods: Anaerobic digestion sludge cake of cattle manure was thermally pretreated at 160℃, 180℃, 200℃, and 220℃ by a hydrothermal pressure reactor, and the biochemical methane potential of ADSC hydrolysate was analyzed. Methane yield recovered by the hydrothermal pretreatment of ADCS was estimated based on mass balance. Results: The chemical oxygen demand solubilization degree (CODs) of the hydrothermal hydrolysate increased to 63.56%, 67.13%, 70.07%, and 66.14% at the hydrothermal reaction temperatures of 160℃, 180℃, 200℃, and 220℃, respectively. Considering the volatile solids content obtained after the hydrothermal pretreatment, the methane of 10.2 Nm3/ton-ADSC was recovered from ADSC of 1.0 ton, and methane yields of ADSC hydrolysate increased to 15.6, 18.0, 17.4, and 17.2 Nm3/ton-ADSC. Conclusion: Therefore, the optimal hydrothermal reaction temperature that yielded the maximum methane yield was 180℃ based on mass balance, and the methane yield from cattle manure containing sawdust was improved by the hydrothermal pretreatment of ADSC.

거대억새(Miscanthus sacchariflorus)의 혐기소화를 위한 메탄생산 퍼텐셜 분석 (Biochemical Methane Potential Analysis for Anaerobic Digestion of Giant Miscanthus (Miscanthus sacchariflorus))

  • 유정숙;김창현;윤영만
    • 한국환경농학회지
    • /
    • 제36권1호
    • /
    • pp.29-35
    • /
    • 2017
  • BACKGROUND: This study was carried out to assess a biochemical methane potential of giant miscanthus (Miscanthus sacchariflorus) which was a promising candidate energy crop due to a high biomass productivity, in order to utilize as a feedstock for the biogas production. METHODSANDRESULTS: Giant miscanthus was sampled the elapsing drying time of 6 months after harvesting. TS (Total Solid) and VS (Volatile Solid) contents were 94.7 and 90.8%. And CP (Crude Protein), EE (Ether Extracts), and CF (Crude Fiber) contents of giant miscanthus were 1.4, 0.46, and 46.12%, respectively. In the organic composition of giant miscanthus, the NDF (Neutral Detergent Fiber) representing cellulose, lignin, and hemicellulose contents showed 86.88%, and the ADF (Acid Detergent Fiber) representing cellulose and lignin contents was 62.91%. Elemental composition of giant miscanthus showed 47.75%, 6.44%, 41.00%, and 0.28% for C, H, O, and N, respectively, and then, theoretical methane potential was obtained to $0.502Nm^3kg^{-1}-VS_{added}$. Biochemical methane potential was assessed as the range of $0.154{\sim}0.241Nm^3kg^{-1}-VS_{added}$ resulting the lower organic biodegradability of 30.7~48.0%. CONCLUSION: Therefore the development of pretreatment technology of the giant miscanthus was needed for the improvement of anaerobic digestability.

유기성 폐자원별 메탄 생산 퍼텐셜 측정 연구 (The Measurement of Biochemical Methane Potential in the Several Organic Waste Resources)

  • 김승환;김현철;김창현;윤영만
    • 한국토양비료학회지
    • /
    • 제43권3호
    • /
    • pp.356-362
    • /
    • 2010
  • 본 연구는 안성시 관내에서 발생하는 폐기물계 바이오매스 중 가축분뇨, 하수, 음식물 슬러지와 도축장에서 발생하는 소 반추위 잔재물을 실험에 공시하고 각 폐자원별 메탄생산퍼텐셜을 측정하였다. 또한 기존 연구자들이 메탄생산퍼텐셜을 측정 자료로부터 최대메탄생산량을 추정하는데 이용한 Modified Gompertz model과 Exponential model을 이용하여 최대메탄생산량을 추정에 있어 모델별 적용성을 비교 검토하고자 하였다. 하수, 가축분뇨, 음식물 슬러지 및 반추위 잔재물에서 TS 함량은 각각 18.1, 23.7, 13.6, 14.8%이었으며, VS 함량은 14.3, 18.9, 11.9, 12.5%이었다. 유기성 폐자원별로 혐기배양 전후 pH는 7.93~8.32의 범위에서 7.09~7.25로 약간 낮아졌으며, 배양기간 중 VS 분해율은 37.8, 8.3, 12.5, 56.4%이었다. Modified Gompertz model을 이용하여 구한 단위메탄생산량은 하수, 가축분뇨, 음식물, 반추위 잔재물에서 각각 0.086, 0.147, 0.146, 0.121 L $CH_{4}\;g^{-1}\;VS_{added}$이었으며, Exponential model을 이용하여 구한 단위메탄생산량은 하수, 가축분뇨, 반추위 잔재물에서 0.109, 0.246, 0.174 L $CH_{4}\;g^{-1}\;VS_{added}$로 Modified Gompertz model을 이용하여 추정한 단위메탄생산량과 비교하여 26.7 ~67.3% 정도 높게 추산되었다.

가축분뇨와 간척지 사료작물의 메탄발생량 (Biochemical Methane Potential of Animal Manure and Cultivated Forage Crops at the Reclaimed Tideland)

  • 허남효;이승헌;김병기
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.79-82
    • /
    • 2008
  • Anaerobic biodegradability(AB), which can be determined with the ultimate methane yield by the decomposition of organic materials, is one of the important parameters for the design and the operation of anaerobic digestion plant. In this study, Biochemical Methane Potential(BMP) test has been carried out to evaluate the methane yield of animal manures, such as pig and cattle slurries, and different forage crops cultivated at the reclaimed tideland, such as maize, sorghum, barley, rye, Italian ryegrass(IRG), rape, rush and sludge produced from slaughterhouse wastewater treatment plant(SWTP). In the ultimate methane yield of animal manure, that of pig slurry(no used a EM) was 407 $mlCH_4/gVS_{fed}$ higher than 242 $mlCH_4/gVS_{fed}$ of cattle slurry. The ultimate methane yield of spike-crop rye was 442.36 $mlCH_4/gVS_{fed}$ the highest among different forage crops, the other showed the value above a methane yield of 300 $mlCH_4/gVS_{fed}$. The forage crop could be used as a good substrate to improve the methane production in anaerobic co-digestion together with animal manure.

  • PDF

시설농업부산물의 잠재메탄발생량 평가 및 사일로 저장에 따른 메탄 발생 변화 (Biochemical Methane Potential of Agricultural Residues and Influence of Ensiling on Methane Production)

  • 이유진;조한상;김재영;강준구;이성수;김규연
    • 대한환경공학회지
    • /
    • 제34권11호
    • /
    • pp.765-771
    • /
    • 2012
  • 본 연구에서는 BMP (Biochemical Methane Potential) test를 통해 얼갈이배추, 딸기, 토마토, 오이, 참외 시설농업부산물의 잠재메탄발생량을 조사하였다. 또한, 시설농업부산물을 사일로에 저장하고 저장 전후의 잠재메탄발생량을 비교하여 사일리지 저장기술이 메탄 생산에 미치는 영향을 분석하였다. 대상 시료의 잠재메탄발생량과 생분해도는 각각 149~286 mL-$CH_4/g$-VS, 27~48%(by vol.)의 범위를 나타내었으며 메탄발생량은 얼갈이배추 > 참외 > 딸기 ${\approx}$ 오이 > 토마토 순으로 조사되었다. 사일로 저장 후, 원시료와 비교하였을 때 VS 기준 메탄발생량이 -11~36%(by vol.) 증감하여 시료 별로 상이한 결과를 보였다. 저장기간 중 유기산 증가, 섬유소 분해로 메탄발생량이 증가하고 화학 성분의 변화, 암모니아 저해로 메탄발생량이 감소한 것으로 판단된다.

메탄생산 향상을 위한 음폐수와 미세조류의 혐기성 통합소화 (Anaerobic co-digestion of food waste leachate with microalgae for improvement of methane production)

  • 이관용;프롬폴;김대기;박종진;최장승;박기영
    • 상하수도학회지
    • /
    • 제28권1호
    • /
    • pp.55-60
    • /
    • 2014
  • Food waste leachate (FWL) is a serious pollutant waste coming from the food waste recycling facilities in Korea. FWL has a high organic matter content and high COD to nitrogen (COD/N) ratio, which can disturb efficient methane production in the anaerobic digestion of FWL. In the present study a microalga, Clorella vulgaris (C.V), was used as co-substrate for the FWL anaerobic digestion in order to supply nutrients, decrease the COD/N ratio and increase its methane yield. Different co-digestion mixtures (COD/N ratios) were studied by using biochemical methane potential test and modified Gompertz equation for kinetic study. Mixed substrate of FWL and C. vulgaris in the co-digestion clearly showed more the biomethane yield than the sole substrates. The maximum methane production, 827.7 mL-$CH_4$/g-VS added, was obtained for COD/N ratio of 24/1, whereas the highest improvement of methane yield was found for COD/N ratio of 15/1.

농축산바이오매스의 고온 혐기성 생분해도 평가 (Thermophilic Anaerobic Biodegradability of Agro-industrial Biomasses)

  • 허남효;강호;정지현;이승헌
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.514-517
    • /
    • 2009
  • Anaerobic biodegradability(AB), which can be determined with the ultimate methane yield by the decomposition of organic materials, is one of the important parameters for the design and the operation of anaerobic digestion plant. In this study, Biochemical Methane Potential(BMP) test has been carried out to evaluate the methane yield of agro-industrial biomasses such as cattle manure, Italian ryegrass(IRG), Oats, Rye and Barley as the forage crops, Rush, the sludges produced from milling and slaughterhouse wastewater treatment plant(SMWTP, SSWTP). In the condition of thermophilic anaerobic digestion, the ultimate methane yield and anaerobic biodegradability of forage crops ranged from 0.367 to $0.452LCH_4$/gVS of methane yield with AB having the range of about 77.0 to 87.3%. On the other hand, that of other substrate showed low figures compared with the forage crops because of low VS content and C/N ratio. Therefore, the forage crops could be used as a good substrate to produce much more the methane in anaerobic digestion.

  • PDF

Effects of Organic Content on Anaerobic Biodegradability of Sludge Generating from Slaughterhouse

  • Oh, Seung-Yong;Kim, Ho;Kim, Chang-Hyun;Kim, Seung-Hwan;Yoon, Young-Man
    • 한국토양비료학회지
    • /
    • 제46권4호
    • /
    • pp.296-302
    • /
    • 2013
  • This study was carried out to investigate the effect of organic content level on ultimate methane potential and anaerobic biodegradability of substrate by biochemical methane potential assay. Three organic matters (whole sludge and liquid and solid fraction of sludge) of the same origin, which had different organic contents, were fermented at the batch anaerobic reactor for 70 days. Ultimate methane potential and anaerobic biodegradability were determined by the terms of volatile solid (VS) and chemical oxygen demand (COD). Volatile solid contents of whole sludge and solid and liquid fraction of sludge were 2.4, 18.8, and 0.2% and COD were 5.3, 30.4, and 0.5%, respectively. Ultimate methane potentials ($B_u$-COD) and anaerobic biodegradability ($D_{VS}$) determined by VS content were $0.5Nm^3kg^{-1}-VS_{added}$, 76.3% for whole sludge, $0.5Nm^3kg^{-1}-VS_{added}$, 76.3% for the liquid fraction of sludge, and $0.6Nm^3kg^{-1}-VS_{added}$, 77.0% for the solid fraction of sludge. Ultimate methane potentials ($B_u$-COD) and anaerobic biodegradability ($D_{COD}$) determined by COD were $0.2Nm^3kg^{-1}-COD_{added}$, 73.4% for whole sludge, $0.2Nm^3kg^{-1}-VS_{added}$, 74.0% for the liquid fraction of sludge, and $0.33Nm^3kg^{-1}-COD_{added}$, 99.1% for the solid fraction of sludge. In conclusion, ultimate methane potential and anaerobic biodegradability given by the VS term showed more reasonable results because COD might be underestimated by the interference of $NH_4{^+}$ in the case of highly concentrated organic material.