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Effects of hydrothermal pretreatment on methane potential of 
anaerobic digestion sludge cake of cattle manure containing 
sawdust as bedding materials

Jun-Hyeong Lee1,2, Chang-Hyun Kim3, and Young-Man Yoon1,2,*

Objective: The purpose of this study was to analyze the effect of the hydrothermal pretreat­
ment of anaerobic digestion sludge cake (ADSC) of cattle manure on the solubilization of 
organic matter and the methane yield to improve the anaerobic digestion efficiency of 
cattle manure collected from the sawdust pens of cattle. 
Methods: Anaerobic digestion sludge cake of cattle manure was thermally pretreated at 
160°C, 180°C, 200°C, and 220°C by a hydrothermal pressure reactor, and the biochemical 
methane potential of ADSC hydrolysate was analyzed. Methane yield recovered by the 
hydrothermal pretreatment of ADCS was estimated based on mass balance.
Results: The chemical oxygen demand solubilization degree (CODs) of the hydrothermal 
hydrolysate increased to 63.56%, 67.13%, 70.07%, and 66.14% at the hydrothermal reaction 
temperatures of 160°C, 180°C, 200°C, and 220°C, respectively. Considering the volatile solids 
content obtained after the hydrothermal pretreatment, the methane of 10.2 Nm3/ton-ADSC 
was recovered from ADSC of 1.0 ton, and methane yields of ADSC hydrolysate increased 
to 15.6, 18.0, 17.4, and 17.2 Nm3/ton-ADSC.
Conclusion: Therefore, the optimal hydrothermal reaction temperature that yielded the 
maximum methane yield was 180°C based on mass balance, and the methane yield from 
cattle manure containing sawdust was improved by the hydrothermal pretreatment of 
ADSC.
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INTRODUCTION

The total amount of livestock manure generated in Korea in 2019 was about 153,220 ton/d 
of which the amount of cattle manure was reported to be about 62,608 ton/d. In general, 
cattle (beef and dairy cattle) breeding facilities mainly adopt sawdust feedlots in which 
sawdust is adopted as the bedding material. Most of the livestock manure generated in 
the solid phase at the sawdust feedlot is composted and used as a fertilizer resource for 
agricultural land. Therefore, in the case of concentrated cattle breeding areas, the existence 
of non-point pollution sources affecting the water system remains a serious concern owing 
to the outflow of excessive nitrogen and phosphorus resulting from the application of cattle 
manure as compost to farmland. In particular, in Korea, the 2050 carbon-neutral policy, 
which requires national greenhouse gas emission to be net zero by 2050, has been estab­
lished, and interest in reducing greenhouse gas emissions by converting livestock manure 
into bioenergy is increasing. Quantitatively, the energy potential of the biomass that can 
be converted and used as bioenergy was assessed as 760,032 TOE/yr for cattle manure, 
314,493 TOE/yr for sewage sludge, 411,656 TOE/yr for food waste, and 196,320 TOE/yr 
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for pig slurry, respectively. Considering that the bioenergy 
potential of cattle manure was evaluated to be the highest, a 
great need exists to promote the conversion of cattle manure 
into bioenergy as part of future plans to generate bioenergy 
from livestock manure. 
  In Korea, cattle manure discharged from cattle breeding 
facilities consists of a mixture of livestock manure and the 
sawdust used as bedding material. In particular, sawdust is 
lignocellulosic biomass and contains a large amount of lignin, 
which is biologically difficult to decompose and is poorly 
decomposed during anaerobic digestion. In addition, cattle 
manure hydrolyzes slowly during the anaerobic digestion 
process. This decreases the anaerobic decomposition efficiency 
of organic matter and increases the generation of anaerobic 
digestion sludge, which impedes the economic feasibility of 
biogas facilities for processing cattle manure [1].  Especially, 
anaerobic digestion sludge cake (ADSC) contains the mois­
ture content above 80%, it is disposed after incineration due 
to the prohibition of direct landfill and ocean disposal in 
Korea. Nowadays, the interest in energy conversion of sludge 
waste is increasing due to high sludge disposal costs and limit­
ed alternative disposal methods. However, ADSC of cattle 
manure is characterized by a high solid content that is com­
posed of lignocellulosic matter. Therefore, it is difficult to be 
fed into conventional anaerobic digesters. Therefore, recent­
ly, various technologies to enhance the hydrolysis efficiency, 
including  physical, chemical, and biological pretreatment, 
have been studied to improve the anaerobic digestion effi­
ciency of cattle manure [2]. Hydrothermal pretreatment 
promotes the hydrolysis of difficult-to-decompose organic 
substances based on thermochemical reactions [3,4]. Hy­
drothermal pretreatment can promote the hydrolysis of 
organic matter by treating organic material with a moisture 
content of 70% to 80% with pressurized hot water at 200°C 
to 300°C. The hydrothermal reaction proceeds via complex 
mechanisms such as dehydration, carboxylation, decarbox­
ylation, and condensation to hydrolyze and carbonize organic 
matter. As a result of these reaction mechanisms, hydrothermal 
pretreatment has been reported to improve the efficiency of 
solid-liquid separation by increasing the dehydration prop­
erties of the hydrothermal hydrolysate and the hydrolysis of 
organic matter [4,5]. Therefore, hydrothermal pretreatment 
increases the methane production rate by accelerating the 
hydrolysis of organic matter. This reaction characteristic 
shortens the hydraulic retention time of the anaerobic di­
gester, thereby reducing its effective volume [6]. The technical 
characteristics of this hydrothermal pretreatment can effec­
tively shorten the operating time of the process by utilizing 
the by-products (e.g., anaerobic digestion sludge) of the an­
aerobic digestion process when applied to conventional 
anaerobic digestion technology [7,8]. Furthermore, the ap­
plication of hydrothermal pretreatment technology to the 

anaerobic digestion of cattle manure containing a large amount 
of cellulosic material reportedly increases the bioenergy re­
covery efficiency by 48.2% to 60.0% [9-11]. However, despite 
these technical advantages, the application of hydrothermal 
pretreatment technology to discharged cattle manure con­
taining sawdust is uncommon in Korea. Therefore, this 
study aimed to improve the anaerobic digestion efficiency of 
cattle manure mixed with sawdust by analyzing the effect of 
hydrothermal pretreatment on the solubilization of organic 
matter and the potential increase in the amount of methane 
produced from the ADSC of the cattle manure. Experimen­
tally, the purpose of this study was to derive the optimal 
hydrothermal pretreatment temperature to improve the an­
aerobic digestion efficiency.

MATERIALS AND METHODS

Materials
Cattle manure was collected from the feedlot of beef cattle 
farmhouse, and the feedstock for anaerobic digestion was 
prepared with the mixture of cattle manure and pig slurry 
for moisture control. Then, the moisture characteristics of 
cattle manure give difficulty at the mixing of wet type anaer­
obic digester. Therefore, pig slurry was used as the moisture 
regulator for the improvement of mixing efficiency of anaer­
obic digester. Thereafter, the anaerobic digestion sludge of 
cattle manure was collected from a pilot scale PFR (Plug and 
flow reactor) type anaerobic digester (effective volume = 100 L) 
that was operated as the hydraulic retention time of 30 days 
in the mesophilic condition (38°C). Then, the collected an­
aerobic digestion sludge was centrifuged at 4,000 rpm for 20 
min, thus preparing the ADSC.

Hydrothermal pretreatment
A batch-type hydrothermal reactor was designed and devel­
oped for the hydrothermal pretreatment of ADSC. The 
hydrothermal reactor was a closed system with no potential 
heat loss via vaporization and condensation. The designed 
hydrothermal reactor had a working volume of 1.5 kg and 
was equipped with an electric heater (a heating coil), a tem­
perature sensor, and a pressure gauge. The temperature 
sensor and pressure gauge were inserted into the reactor to 
monitor the inner temperature and saturated vapor pressure 
during the hydrothermal reaction. The sludge cake (1.5 kg) 
was placed directly in the reactor without additional pro­
cessing water and the reactor was sealed with an airtight 
sealant for the hydrothermal reaction test. The temperature 
settings were 160°C, 180°C, 200°C, and 220°C. When the 
temperature in the reactor reached each of these settings, 
isothermic conditions were maintained for 60 min. The in­
ner vapor pressures corresponding to these temperatures 
were 0.85 MPa at 160°C, 1.18 MPa at 180°C, 1.78 MPa at 
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200°C, and 2.51 MPa at 220°C. The hydrothermal reactor 
was cooled to room temperature at the end of the hydro­
thermal reaction using a chiller, whereupon the hydrothermal 
hydrolysates were recovered from the reactor.

Methane production potential
The theoretical methane potential (Bth) was calculated stoi­
chiometrically using Boyle's equation based on the elemental 
analysis results of the samples (Equation 1 and 2) [12].
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  The inoculum for the biochemical methane potential assay 
of the hydrothermal hydrolysate was kept under mesophilic 
conditions at 38°C for one week to remove any remaining 
biodegradable fraction. The substrate to inoculum ratio in all 
anaerobic batch reactors was equal to 0.5 (g-VSsubstrate/g-VSinoculum). 
The working volume for anaerobic batch fermentation was 
80 mL of a 160 mL serum bottle. The headspace of the serum 
bottle was filled with N2 gas and sealed with a butyl rubber 
stopper. The anaerobic batch reactors for each sample and 
blank were incubated for up to 90 days in the convection in­
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period. Then, the anaerobic batch reactors for each sample 
and blank were performed in three replicates. The biochemical 
methane potential was calculated based on the volatile solid 
(VS) content. The biochemical methane potentials of the 
samples were corrected using the blank value, and calibrated 

under standard temperature and pressure (STP) conditions 
(0°C, 1 atm). The modified Gompertz model (Equation 3) 
[14] and the parallel first-order kinetic model (Equation 4) 
were employed to interpret the progress of cumulative methane 
production. This enabled the cumulative methane production 
data to be optimized using these equations [15]. Especially, 
the modified Gompertz model was applied for the estimation 
of lag phase time and maximum methane production rate, 
and the parallel first-order kinetic model was used the esti­
mation of organic fractionation composing of ADSC. 
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production curves of the hydrothermal hydrolysates were 
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pertz and parallel first-order kinetic models, respectively. 
The degree of optimization by the two mathematical models 
was evaluated by the root mean square deviation (RMSD) 
(Equation 5). 
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Estimation of fraction of organic matter
The parallel first-order kinetic model (Equation 4) considers 
that the degradation of organic matter sequentially occurs in 
two stages. In addition, fe distributes the characteristics of 
the two types of substrates with different reaction rates under 
anaerobic conditions, and k1 and k2 indicate the first-order 

Table 1. Chemical composition of inoculum

Parameters pH  
(-)

TS  
(mg/L)

VS  
(mg/L)

TKN  
(mg/L) 

NH4
+-N  

(mg/L)
CODCr  
(mg/L)

SCODCr 
(mg/L)

Alkalinity  
(mg/L as CaCO3)

TVFAs  
(mg/L as acetate)

Inoculum 7.91 59,347 31,007 5,188 3,262 39,250 2,498 34,238 1,165

All data means the average value from three replicates (n =  3). 
TS, total solid, VS, volatile solid; TKN, total kjeldahl nitrogen; NH4

+-N, ammonium nitrogen; CODCr, chemical oxygen demand; SCODCr, soluble chemical oxy-
gen demand; TVFAs, total volatile fatty acids.
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kinetics constants for the first and second organic degradation 
stages, respectively. In this study, based on the characteristics 
of the parallel first-order kinetic model, the characteristics of 
the organic material composition of the substrate were estimat­
ed from the analysis results of the rate of the decomposition 
reaction of the organic material. The total volatile solids 
(VST) of the substrate were assumed to consist of a biode­
gradable volatile solid fraction (VSB) and a non-biodegradable 
volatile solid fraction (VSNB), as in Equation 6. The biode­
gradable organic fraction was defined as consisting of easily 
biodegradable volatile solids (VSe) that were readily decom­
posed in the early stage of anaerobic digestion and persistently 
biodegradable volatile solids (VSp) that were slowly decom­
posed owing to their resistance to decomposition as in Equation 
7 [7]. Then, the composition fraction of VSe and VSp can be 
estimated by the fe (the organic distribution constant for the 
two first-order kinetics, g/g) as in Equation 8.
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where VSe is the easily biodegradable volatile solid content 
(%, w/w), VSp is the persistently biodegradable volatile solid 
content (%, w/w), and fe is the organic distribution constant 
for the two first-order kinetics models (VSe/VSB, g/g).

Analysis
The total solids (TS), VS, pH, chemical oxygen demand 
(CODCr), soluble chemical oxygen demand (SCODCr), total 
kjeldahl nitrogen (TKN), ammonium nitrogen (NH4

+-N), 
and alkalinity were determined based on standard methods 
[16]. The total volatile fatty acids (TVFAs) were measured 
using a gas chromatograph (GC2010; Shimadzu Scientific 
Instruments, Inc., Columbia, MD, USA) equipped with a 
flame ionization detector with an automatic sampler. This 
chemical analysis was performed in three replicates. The 
elemental composition (C, H, N, O, S) was determined 
using an element analyzer (EA1108; Thermo Finnigan LLC, 

San Jose, CA, USA) and the CODCr solubilization degree 
(CODs) of the hydrothermal hydrolysate was calculated by 
Equation 9, where CODs represents the CODCr solubilization 
degree of the hydrothermal hydrolysate, SCODCr-hydrolysate 
represents the SCODCr of the hydrothermal hydrolysate, 
and SCODCr-ADSC represents the SCODCr of ADSC. 
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  In the anaerobic batch reactor experiment, the total gas 
production was measured daily for the first five days and 
then every two or three days. The gas that was produced dis­
placed an acidified brine solution in a burette and the volume 
of displaced solution was recorded after correcting for atmo­
spheric pressure [17]. The CH4 and CO2 concentrations in 
the gas samples were determined using a gas chromatograph 
(Clarus 680; PerkinElmer, Inc., Waltham, MA, USA) equipped 
with a thermal conductivity detector and a HayeSepQ packed 
column (CRS Inc., Louisville, KY, USA). The column was 
operated with helium carrier gas at a flow rate of 5 mL/min. 
The temperatures of the injector, oven, and detector were set 
to 150°C, 90°C, and 150°C, respectively [14]. 

Statistical analysis
The tables in this article present the mean values and stan­
dard deviations of the data obtained from the experiments. 
The statistical analysis of the results of this experiment was 
analyzed using the general linear model procedure of the 
SAS program package (SAS ver. 9.4; SAS instrument Inc., 
Cary, NC, USA), and the significant difference (p<0.05) of 
the mean between treatments was tested through Duncan's 
multiple range test.

RESULTS AND DISCUSSION

Physicochemical properties of ADSC and ADSC 
hydrolysates
Table 2 presents the elemental analysis results and theoreti­
cal methane potentials of the hydrothermal hydrolysate 
obtained by the hydrothermal pretreatment of ADSC at 
160°C, 180°C, 200°C, and 220°C and the anaerobically di­
gested sludge cake (ADSC) of the cattle feedlot manure. The 
carbon (C) content of the ADSC was 34.0%, and that of the 
hydrothermal hydrolysate at the reaction temperatures of 
160°C, 180°C, 200°C, and 220°C was 37.5%, 37.2%, 36.4%, 
and 35.2%, respectively. Based on the results of the elemental 
analysis, the theoretical methane potential was stoichiomet­
rically calculated according to Boyle's equations (Equation 1 
and 2), and the theoretical methane potential (Bth) of ADSC 
was 0.425 Nm3/kg-VSadded. The Bth of the hydrothermal hydro­
lysates were 0.478, 0.462, 0.496, and 0.466 Nm3/kg-VSadded at 
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the hydrothermal reaction temperatures of 160°C, 180°C, 
200°C, and 220°C, respectively. Therefore, the hydrothermal 
pretreatment of ADSC increased the carbon content and 
theoretical methane potential of the hydrolysate, with the 
highest theoretical methane potential corresponding to the 
reaction temperature of 200°C for hydrothermal pretreat­
ment. Table 3 presents the physicochemical analysis of 
ADSC and hydrothermal hydrolysate. The TS and VS con­
tents of the hydrothermal hydrolysate have the lowest values 
of 203,799 and 140,056 mg/kg, respectively, at the reaction 
temperature of 200°C. The value of SCODCr was 39,595, 
43,900, 48,215, and 42,620 mg/L for the 160°C, 180°C, 200°C, 
and 220°C hydrothermal hydrolysates, respectively. The sol­
ubilization degree of COD (CODs) increased to 63.56%, 
67.13%, 70.07%, and 66.14% for the hydrothermal hydroly­
sates at 160°C, 180°C, 200°C, and 220°C compared to ADSC, 
respectively. Generally, hydrothermal pretreatment using pig 
manure, cattle manure, chicken manure, etc. reportedly dif­
fers in terms of the solubilization degree of organic matter 
and the effect of temperature, depending on the characteristics 
of the raw material [18-20]. In addition, as the hydrother­
mal pretreatment entails the hydrolysis and carbonization 

reactions of the organic matter, the amount of elemental 
carbon and the theoretical methane potential increased, as 
reported previously [21]. Therefore, the hydrothermal hy­
drolysate can be easily converted to methane in an anaerobic 
digester [22].

Biochemical methane potential assay
Figure 1 shows the cumulative methane production curve of 
the ADSC hydrothermal hydrolysate optimized with the 
modified Gompertz model (Equation 3). The parameters 
obtained by the modified Gompertz model are listed in Table 
4. The methane potential (Bu-G) of the ADSC hydrother­
mal hydrolysate, estimated with the modified Gompertz 
model, was 0.075, 0.092, 0.112, and 0.104 Nm3/kg-VSadded 
at the hydrothermal pretreatment reaction temperatures of 
160°C, 180°C, 200°C, and 220°C, respectively. Moreover, 
the methane yields increased by 59.57%, 95.74%, 138.30%, 
and 121.28% relative to the Bu-G of ADSC (0.047 Nm3/kg-
VSadded), respectively, and the hydrothermal pretreatment 
reaction temperature of 200°C yielded the highest amount 
of methane. The maximum methane production rates (Rm) 
of the ADSC hydrothermal hydrolysate were 3.9, 4.8, 5.8, 

Table 2. Elemental compositions and theoretical methane potential of hydrothermal hydrolysates in the hydrothermal pre-treatment of anaerobic 
digestion sludge cake

Parameters ADSC
Hydrothermal reaction temperature (°C)

160 180 200 220

Elemental composition (wt. %, d.b.1))
C 34.0 37.5 37.2 36.4 35.2
H 3.9 4.1 3.9 3.8 3.6
O 30.1 28.1 29.4 25.1 26.7
N 2.3 2.1 1.9 2.3 2.0
S 1.2 1.3 1.1 1.2 1.4

Bth
2) (Nm3-CH4/kg-VSadded) 0.425 0.478 0.462 0.496 0.466

All data means the average value from three replicates (n =  3). 
ADSC, anaerobic digestion sludge cake. 
1) Dry basis. 
2) Theoretical methane potential.

Table 3. Chemical characteristics of hydrothermal hydrolysates in the hydrothermal pre-treatment of anaerobic digestion sludge cake

Parameters ADSC
Hydrothermal reaction temperature (°C)

p-value SEM
160 180 200 220

TS (mg/kg) 267,370a 260,375a 257,419a 203,799c 227,572b < 0.05 6,534
VS (mg/kg) 189,545a 181,628b 171,833b 140,056c 145,909c < 0.05 5,218
TKN (mg/kg) 11,448a 9,577b 9,886b 8,867c 9,759b < 0.05 250
NH4

+-N (mg/kg) 6,180a 4,430b 4,213c 4,220bc 4,334bc < 0.05 205
SCODCr (mg/L) 14,430d 39,595c 43,900b 48,215a 42,620b < 0.05 3,214
CODs

1) (wt. %, w.b.2)) - 63.56c 67.13b 70.07a 66.14b

All data means the average value from three replicates (n =  3). 
ADSC, anaerobic digestion sludge cake; SEM, standard error of the mean; TS, total solid; VS, volatile solid; TKN, total kjeldahl nitrogen; NH4

+-N, ammonium 
nitrogen; SCODCr, soluble chemical oxygen demand; CODs, chemical oxygen demand solubilization degree.
1) COD solubilization degree of ADSC by the hydrothermal pretreatment. 
2) Wet basis. 
a-d Mean with different letter differs significantly between treatment (DMRT; Duncan's multiple range test, p < 0.05). 
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and 5.3 mL/d, respectively. In comparison with the Rm (2.6 
mL/d) of ADSC, the Rm of the ADSC hydrothermal hydro­
lysate increased to 50.00%, 88.46%, 123.08%, and 103.85% 
at hydrothermal pretreatment reaction temperatures of 
160°C, 180°C, 200°C, 220°C, respectively. The lag growth 
phase time (λ) of ADSC was 2.7 days and the lag growth 
phase times (λ) of the ADSC hydrothermal hydrolysate 
were 1.7, 1.6, 1.1, and 1.6 days at the hydrothermal pretreat­
ment reaction temperatures of 160°C, 180°C, 200°C, and 
220°C, respectively. Thus, the hydrothermal pretreatment 
time of ADSC was shortened by 37.04%, 40.74%, 59.26%, 
and 40.74% compared to λ of ADSC, respectively. Figure 2 

shows the cumulative methane production curve of the 
ADSC hydrothermal hydrolysate optimized with the parallel 
first-order kinetic model (Equation 4). The parameters de­
termined with this model are listed in Table 5. The methane 
potential (Bu-P) of the ADSC hydrothermal hydrolysate es­
timated with the parallel first-order kinetic model, was 
0.086, 0.105, 0.124, and 0.118 Nm3/kg-VSadded at the hydro­
thermal pretreatment reaction temperatures of 160°C, 
180°C, 200°C, and 220°C, respectively. Thus, the hydro­
thermal pretreatment reaction temperature of 200°C yielded 
the largest amount of methane. A comparison of the per­
formance of the modified Gompertz model and the parallel 

Figure 1. Methane yield curves optimized by the modified Gompertz model in the hydrothermal pretreatment of ADSC (Vertical bar means stand-
ard error, n = 3). The filled cycle (●) shape represents ADSC, blank circle (○) shape represents hydrolysate (160°C), filled inverted triangle (▼) shape 
represents hydrolysate (180°C), blank triangle (Δ) shape represents hydrolysate (200°C), and filled quadrangle (■) shape represents hydrolysate 
(220°C). ADSC, anerobic digestion sludge cake.

28 
 

Fermentation time (days)

0 20 40 60 80 100

M
et

ha
ne

 y
ie

ld
 (N

m
3 /k

g-
V

S a
dd

ed
)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

 506 

Figure 1. Methane yield curves optimized by the modified Gompertz model in the hydrothermal 507 

pretreatment of ADSC (Vertical bar means standard error(n=3)). The filled cycle (●) shape represents 508 

ADSC, blank circle (○)shape represents hydrolysate (160℃), filled inverted triangle (▼) shape represents 509 

hydrolysate (180℃), blank triangle (△) shape represents hydrolysate (200℃), and filled quadrangle (■) 510 

shape represents hydrolysate (220℃).  511 

 512 

  513 

Table 4. Methane yield characteristics analysis by the modified Gompertz model in the hydrothermal pretreatment of ADSC

Parameters ADSC
Hydrothermal reaction temperature (°C)

160 180 200 220

Bu-G (Nm3-CH4/kg-VSadded) 0.047 ± 0.0031) 0.075 ± 0.001 0.092 ± 0.002 0.112 ± 0.0002 0.104 ± 0.001
Rm (mL/d) 2.6 ± 0.1 3.9 ± 0.02 4.9 ± 0.1 5.8 ± 0.03 5.3 ± 0.1
λ2) (d) 2.7 ± 0.1 1.7 ± 0.04 1.6 ± 0.3 1.1 ± 0.1 1.6 ± 0.1
VSr

3) (wt. %, d.b.4)) 10.4 ± 0.6 15.6 ± 0.2 20.6 ± 0.5 23.9 ± 0.04 21.0 ± 0.1
RMSD 0.006 0.008 0.010 0.009 0.010

All data means the average value from three replicates (n =  3). 
ADSC, anaerobic digestion sludge cake; Bu-G, biochemical methane potential by the modified Gompertz model; Rm, maximum methane production rate; 
RMSD, root mean square deviation of the modified Gompertz model.
1) Standard deviation.
2) Lag growth phase time. 
3) Degree of degradation (Bu-G/Bth). 
4) Dry basis.
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first-order kinetic model with respect to optimizing the 
cumulative methane production curve of the ADCS hydro­

thermal hydrolysate, respectively, revealed that the RMSD 
of the former model was in the range of 0.006 to 0.010, and 

Figure 2. Methane yield curves optimized by the Parallel first-order kinetic model in the hydrothermal pretreatment of ADSC (Vertical bar means 
standard error, n = 3). The filled cycle (●) shape represents ADSC, blank circle (○) shape represents hydrolysate (160°C), filled inverted triangle (▼) 
shape represents hydrolysate (180°C), blank triangle (Δ) shape represents hydrolysate (200°C), and filled quadrangle (■) shape represents hydro-
lysate (220°C). ADSC, anerobic digestion sludge cake.
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Figure 2. Methane yield curves optimized by the Parallel first-order kinetic model in the hydrothermal 515 

pretreatment of ADSC(Vertical bar means standard error(n=3)). The filled cycle (●) shape represents ADSC, 516 

blank circle (○) shape represents hydrolysate (160℃), filled inverted triangle (▼) shape represents 517 

hydrolysate (180℃), blank triangle (△) shape represents hydrolysate (200℃), and filled quadrangle (■) 518 

shape represents hydrolysate (220℃).  519 

 520 

Table 5. Methane yield and organic fraction characteristics analysis by the Parallel first-order kinetic model in the hydrothermal pretreatment of 
ADSC

Parameters ADSC
Hydrothermal reaction temperature (°C)

160 180 200 220

Bu-P
1) (Nm3-CH4/kg-VSadded) 0.054 ± 0.003 0.086 ± 0.002 0.105 ± 0.002 0.124 ± 0.001 0.118 ± 0.003

VSr
2) (wt. %, d.b.3)) 11.8 ± 0.7 17.9 ± 0.4 23.3 ± 0.5 26.7 ± 0.2 23.7 ± 0.6

fe
4) 0.066 ± 0.002 0.641 ± 0.007 0.651 ± 0.041 0.669 ± 0.067 0.540 ± 0.024

k1
5) (1/s) 0.068 ± 0.003 0.094 ± 0.001 0.091 ± 0.007 0.084 ± 0.003 0.089 ± 0.007

k2 (1/s) 0.022 ± 0.0004 0.020 ± 0.001 0.022 ± 0.004 0.027 ± 0.011 0.027 ± 0.003
Organic fractions6)

VSB
7) (wt. %, d.b.) 11.9 ± 0.7 17.9 ± 0.4 23.3 ± 0.5 26.7 ± 0.2 23.7 ± 0.6

VSe
8) (wt. %, d.b.) 5.5 ± 0.3 11.5 ± 0.1 15.2 ± 0.8 17.8 ± 1.8 12.8 ± 0.3

VSp
9) (wt. %, d.b.) 6.3 ± 0.4 6.5 ± 0.3 8.1 ± 1.1 8.8 ± 1.8 10.9 ± 0.8

VSNB
10) (wt. %, d.b.) 88.1 ± 0.7 82.1 ± 0.4 76.7 ± 0.5 73.3 ± 0.2 76.3 ± 0.6

RMSD11) 0.001 0.001 0.002 0.003 0.002

All data means the average value from three replicates (n =  3). 
ADSC, anerobic digestion sludge cake; VS, volatile solid. 
1) Biochemical methane potential by the parallel first-order kinetics model. 
2) Degree of degradation (Bu-P/Bth). 
3) Dry basis. 
4) Distribution coefficient of the parallel first-order kinetics model.  
5) First-order reaction rate constant. 
6) Organic fractions estimated by the parallel first-order kinetics model. 
7) Biodegradable volatile solid. 
8) Easily biodegradable volatile solid. 
9) Persistently biodegradable volatile solid. 
10) Non-biodegradable volatile solid. 
11) Root mean square deviation of the Parallel first-order kinetic model.
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that of the latter model ranged from 0.001 to 0.002. There­
fore, the parallel first-order kinetic model was more suitable 
for the analysis of the cumulative methane production curve 
of the ADSC hydrothermal hydrolysate containing persis­
tently biodegradable VS.

Changes of VS fractionation and methane production
The organic distribution constant (fe), which indicates the 
distribution of the easily biodegradable volatile solids (VSe) 
and persistently biodegradable volatile solids (VSp), was esti­
mated to be 0.066 for the ADSC. In comparison, the fe of the 
ADSC hydrothermal hydrolysate was 0.641, 0.651, 0.669, 
and 0.540 at the hydrothermal pretreatment reaction tem­
peratures of 160°C, 180°C, 200°C, and 220°C, respectively. 
The organic matter (VS) contained in the ADSC was charac­
terized as consisting of 11.9% biodegradable volatile solids 
(VSB) and 88.1% non-biodegradable volatile solids (VSNB). 
More specifically, the VSB fraction of ADSC was estimated 
to be composed of VSe of 5.5% and VSp of 6.3%. The VSB 
fraction of the ADSC hydrothermal hydrolysate increased to 
17.9%, 23.3%, 26.7%, and 23.7% at hydrothermal reaction 
temperatures of 160°C, 180°C, 200°C, and 220°C, respectively, 
whereas VSNB decreased to 82.1%, 76.7%, 73.3%, and 76.3%, 
respectively. Regarding the VSB fraction of the ADSC hydro­
thermal hydrolysate, 11.5%, 15.2%, 17.8%, and 12.8% were 
estimated to be VSe, and 6.5%, 8.1%, 8.8%, and 10.9% to be 
VSp at the hydrothermal reaction temperatures of 160°C, 
180°C, 200°C, and 220°C, respectively. As aforementioned, 
the hydrothermal pretreatment reaction temperature of 
200°C yielded the largest amount of methane. However, con­

sidering the VS content obtained after the hydrothermal 
pretreatment, VS obtained from the ADSC of 1ton was 189.5 
kg, and VS obtained from ADSC hydrolysate were 181.6, 
171.8, 140.1, and 145.9 kg at the hydrothermal reaction tem­
peratures of 160°C, 180°C, 200°C, and 220°C, respectively. 
Then, the methane of 10.2 Nm3/ton-ADSC was recovered 
from ADSC of 1.0 ton, and methane yields of ADSC hydro­
lysate increased to 15.6, 18.0, 17.4, and 17.2 Nm3/ton-ADSC 
(Figure 3). Therefore, the optimal hydrothermal reaction 
temperature that yielded the maximum methane yield was 
180°C based on mass balance.
  Hydrothermal pretreatment was shown to be an efficient 
method for hydrolyzing cattle manure containing difficult-
to-decompose organic matter. However, hydrothermal 
pretreatment has been reported to lead to different degrees 
of solubilization of organic substances depending on the 
constituents of the raw materials, reaction temperature, and 
reaction time [21,23,24]. In this study, a hydrothermal reac­
tion temperature of 200°C was determined to be the optimal 
temperature at which the methane yield is maximized. How­
ever, as the hydrothermal reaction temperature increased, 
the VSe and VSp fractions increased simultaneously with the 
VSp content (persistently biodegradable) changing most sig­
nificantly at the hydrothermal reaction temperature of 200°C. 
Marin-Batista et al [10] reported a methane yield of 0.111 
Nm3/kg-VSadded from the anaerobic digestion of cattle ma­
nure and reported yields of 0.294, 0.235, and 0.080 Nm3/kg-
VSadded from the hydrothermal hydrolysates at hydrothermal 
reaction temperatures of 170°C, 200°C, and 230°C, respec­
tively. In addition, Kim et al [25] reported methane potentials 

Figure 3. Methane yield and VS fractionation in the hydrothermal pretreatment of ADSC (Vertical bar means standard error, n = 3). The ADSC indi-
cates anaerobic digestion sludge cake, and H160°C, H180°C, H200°C, and H220°C indicate hydrothermal pre-treatment reaction temperature. The 
VSBN means non-biodegradable volatile solid fraction, the VSe means easily biodegradable volatile solid fraction, the VSp means persistently biode-
gradable volatile solid fraction, and the filled cycle (●) shape represents CH4 production.
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of 0.197, 0.231, 0.221, and 0.200 Nm3/kg-VSadded for pig sludge 
hydrothermally pretreated at 200°C, 220°C, 250°C, and 
270°C, respectively. These results are consistent with the re­
sults of our study in that the maximum methane yield was 
obtained at a hydrothermal reaction temperature of 200°C 
and decreased at hydrothermal reaction temperatures of 
220°C or higher. In particular, this decrease in the methane 
yield was often reported for the high-temperature hydro­
thermal pretreatment of diverse biomass. Gossett et al [26] 
reported that hydrothermal pretreatment could solubilize 
the cellulose and lignin in the raw material at a hydrother­
mal reaction temperature of 160°C or higher, but discovered 
that phenolic substances might be produced, thereby inhib­
iting the productivity of methanogens. In addition, it has 
been reported that, as the temperature of the hydrothermal 
pretreatment increases, the portion of soluble organic matter 
increases, but the concentration of refractory material in 
the soluble organic matter also increases [27,28]. Further­
more, Oh and Yoon [29] reported that the methane yields 
for hydrothermal hydrolysate at 170°C, 180°C, 190°C, 200°C, 
and 220°C using poultry slaughterhouse wastewater sludge 
cake were 0.222, 0.242, 0.237, 0.228, and 0.197 Nm3/kg-
CODadded, respectively. The lower methane yield at a reaction 
temperatures higher than 200°C may be attributable to the 
Maillard reaction in which carbohydrates react with amino 
acids at high temperatures to form melanoidine with low 
biodegradability [3,30]. Therefore, the lower methane yield 
of the ADSC hydrothermal hydrolysate pretreated at the 
hydrothermal reaction temperature of 220°C in this study 
may be the effect of recalcitrant substances produced by 
the cell wall material contained in the sawdust in the ADSC 
during the high-temperature hydrothermal reaction. Par­
ticularly, the ADSC in this study has already undergone 
anaerobic digestion, and the raw ADSC was composed of 
difficult-to-decompose organic substances; therefore, the 
possibility exists that the cellulose, hemicellulose, lignin, 
etc. contained in the sawdust could be converted into phe­
nolic compounds during the hydrothermal pretreatment. 
In addition, another possibility is that carbohydrates could 
react with amino acids at high temperatures according to 
the Maillard reaction, because ADSC contains large amounts 
of cellulose and nitrogen sources such as bacterial cells. 

CONCLUSION

In Korea, beef and dairy cattle mainly use sawdust as a bed­
ding material, and the cattle manure is discharged as a sawdust 
mixture with a moisture content of about 70%. Therefore, a 
specially designed solid phase anaerobic digestion process is 
developed for the anaerobic digestion of cattle manure, or 
the moisture content is to be regulated to keep proper fluidity 
for the improvement of agitation efficiency in order to input 

into the conventional type wet anaerobic digester. In particular, 
sawdust contained in cattle manure has a high lignin con­
tent, that is not decomposed well in an anaerobic digester 
and causes an anaerobic digestion efficiency to decrease. There­
fore, in this study, for the wet anaerobic digestion of cattle manure 
discharged from a sawdust barn, a process for improving the 
overall anaerobic digestion efficiency was reviewed by the 
hydrothermal pretreatment of the ADSC and reintroducing 
ADSC hydrolysate to the anaerobic digester. The hydrother­
mal pretreatment of the ADSC was performed in a high-
temperature and high-pressure closed-type reactor, and the 
methane yield of the ADSC hydrothermal hydrolysate was 
the highest at 200°C, 0.112 Nm3/kg-VSadded. However, as a 
result of analyzing the production of methane that can be 
recovered from 1 ton of ADSC based on the mass balance, 
although the methane yield (0.092 Nm3/kg-VSadded) at 180°C 
was lower than the methane yield (0.112 Nm3/kg-VSadded) at 
200°C, methane recovery (18.0 Nm3/ton-ADSC) at 180°C 
was higher than methane recovery (17.4 Nm3/ton-ADSC) at 
200°C. This is due to the decrease in the content of residual 
organic matter (VS) by the enhancement of dehydration, 
carboxylation, and decarboxylation reactions as the hydro­
thermal pretreatment temperature increases. In particular, 
hydrothermal pretreatment at 200°C improved the methane 
yield of ADSC hydrothermal hydrolysate more than that at 
180°C, however, the heat capacity corresponding to 200°C 
requests more consuming energy than the hydrothermal 
pretreatment reaction at 180°C. Therefore, the hydrothermal 
reaction condition of 180°C is more economical in terms 
of the energy efficiency of the hydrothermal pretreatment 
process. In this study, the overall methane production could 
be improved through hydrothermal pretreatment of ADSC, 
nevertheless, the proportion of non-degradable organic 
matter content showed 76.7% even after hydrothermal pre­
treatment at 180°C, and a large amount of VS was present 
in a non-degradable form. This result shows that the effi­
ciency of hydrothermal hydrolyzation of lignin contained in 
sawdust is low. Therefore, recently, a solid fuel production 
technique has been developed by the mechanical dehydration 
of the non-degradable solids generated in the hydrother­
mal pretreatment of ADSC for the diversifying the utilization of 
biomass energy. The results of this study suggest the possibil­
ity of economical energy conversion of cattle manure, 
which effectively converts ADSC into energy. However, 
commercialization of the hydrothermal pretreatment tech­
nology would require the process energy efficiency and the 
recovery of solid fuel by hydrothermal carbonization reac­
tion to be studied in greater detail.
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