• 제목/요약/키워드: Bioabsorbable membrane

검색결과 12건 처리시간 0.024초

2급 이개부 병변을 동종골과 혈소판 농축 혈장으로 치료시 차폐막 사용에 따른 임상적 효과의 비교 연구 (A comparative study of clinical effects following treatment of class II furcations using allograft and PR with and without bioabsorbable membrane)

  • 박순재;임성빈;정진형
    • Journal of Periodontal and Implant Science
    • /
    • 제32권3호
    • /
    • pp.631-642
    • /
    • 2002
  • The present study evaluated of regeneration effect of platelet rich plasma on the treatment of classII furcation involvement, with allograft in humans. The control was treated without bioabsorbable membrane, and the test was treated with bioabsorbable membrane. Pocket depth, clinical attachment level, and gingival recession were measured at baseline, postoperative 3, 6months. Both groups were statistically analyzed by Wilcoxon signed Ranks Test & Mann-whitney Test using SPSS program (5% significance level). The results were as follows: 1. The change of pocket depth and clinical attachment level in both groups was decreased significantly at 3, 6months.(p<0.05) 2. The change of gingival recession in both groups was increased significantly at 3, 6months than at baseline.(p (0.05) 3. The change of pocket depth and clinical attachment level in both groups was increased significantly at 3, 6months, but there were no statistically or clinically significant differences with both groups. 4. The change of gingival recession in both groups was increased significantly at 3, 6months, but there were no statistically or clinically significant differences with both groups. 5. The significant reduction of the pocket depth and clinical attachment level exhibited marked changes at 3 months in both groups. In conclusion, the results of this study suggest that there are no statistically or clinically significant differences between with and without bioabsorbable membrane on treatment of classII furcations using allograft and PRP

백서에서 흡수성막과 탈회동결건조골을 이용한 두개골결손부의 골재생 (GUIDED BONE REGENERATION OF CALVARIAL BONE DEFECTS USING BIOABSORBABLE MEMBRANE AND DEMINERALIZED FREEZE DRIED BONE IN RATS)

  • 김수민;여환호;김수관;임성철
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제28권4호
    • /
    • pp.290-301
    • /
    • 2002
  • The purpose of this study was to evaluate new bone formation and healing process in rat calvarial bone defects using $BioMesh^{(R)}$. membrane and DFDB. Forty eight rats divided equally into 4 groups of 1 control group and 3 experimental groups. Standardized transosseous circular calvarial defects (8 mm in diameter) were made midparietally. In the control group, the defect was only covered with the soft tissue flap. In the experimental group 1, it was filled with DFDB only, in the experimental group 2, it was covered $BioMesh^{(R)}$. membrane only, and in the experimental group 3, it was filled DFDB and covered with membrane. At the postoperative 1, 2, 4, 8 weeks, rats were sacrificed and histologic and histomorphometric analysis were performed. These results were as follows. In histomorphometric analysis, It showed the greatest amount of new bone formation through experimental in the experimental group 3 (P<0.001). The amount of new bone formation at the central portion of the defect was greater in the experimental group 3 than experimental group 2. $BioMesh^{(R)}$. membrane began to resorb at 1 week and resorbed almost completely at 8 weeks after operation. The collapse of membrane into the defect was observed through the experimental periods in the experimental group 2. In the area of collapsed membrane, new bone formation was restricted. These results suggest that maintenance of some space for new bone to grow is required in the use of $BioMesh^{(R)}$. membrane alone in the defect. It is also thought that use of the membrane may promote new bone growth in DFDB graft.

흡연이 흡수성 차폐막을 이용한 조직유도재생술의 치유에 미치는 영향 (Influence of Smoking on Short-Term Clinical Results of Periodontal Bone Defects Treated with Regenerative Therapy Using Bioabsorbable Membranes)

  • 강태헌;설양조;이용무;계승범;김원경;정종평;한수부
    • Journal of Periodontal and Implant Science
    • /
    • 제30권2호
    • /
    • pp.305-324
    • /
    • 2000
  • This study compared the short-term(4 months) clinical results of regenerative therapy with bioabsorbable membranes($BioMesh^{(R)}$) and bone allograft for the treatment of periodontal(intrabony and furcation) defects in smokers and nonsmokers.(16 smokers) 32 subjects with 92 defects participated in the study(46 in smokers and 46 in non-smokers). This study also evaluated a bioresorbable barrier with and without decalcified freeze-dried bone allograft(DFDBA). The 92 periodontal defects were randomly treated with either the resorbable barrier alone or resorbable barrier in combination with DFDBA following thorough defect debridement and root preparation with tetracycline. Each patient received both types of treatment modalities. Clinical examinations(probing depth, gingival recession, clinical attachment level, plaque index and gingival index) were carried out immediately before and 4 months after surgery. Significant(p<0.001) gains in mean attachment level were observed for both smokers(2.93mm) and non-smokers(3.30mm) but there were not significant difference between two groups. Similarly, significant reductions in mean probing depthshowed for smokers(4.52mm) and non-smokers(4.26mm). However, when comparing gingival recession, smokers were found to exhibit significantly poorer treatment results(1.59mm vs 0.96mm, p<0.05). Using the split-mouth-design, no statistically significant difference between the two modalities could be detected with regard to pocket depth reduction, gingival recession, or attachment gain. These results illustrate that the attachment gain is better in the non-smoker and the best in the non-smoker with the combination therapy of resorbable barrier and DFDBA than with resorbable barrier alone but smoking had no significant effect on clinical treatment outcome, even though smokers show more significant gingival recession. In addition, both treatments, either resorbable barrier plus DFDBA or resorbable barrier alone, promoted significant resolution of periodontal defects but the addition of DFDBA with a bioabsorbable membrane appears to add no extra benefit to the only membrane treatment.

  • PDF

2급 치근분지부 병소에서의 생분해성 차폐막의 효과 (Treatment of Class II Furcation Involvements in Humans with Bioabsorbable Guided Tissue Regeneration Barriers)

  • 이학철;한승민;설양조;이철우;엄흥식;장범석;정종평;한수부
    • Journal of Periodontal and Implant Science
    • /
    • 제29권3호
    • /
    • pp.539-553
    • /
    • 1999
  • The purpose of this 6-months study was to compare the clinical and radiographic outcomes following guided tissue regeneration treating human mandibular Class II furcation defects with a bioabsorbable BioMesh barrier(test treatment) or a nonabsorbable ePTFE barrier(control treatment). Fourteen defects in 14 patients(mean age 44 years) were treated with BioMesh barriers and ten defects in 10 patients(mean age 48 years) with ePTFE barriers. After initial therapy, a GTR procedure was done. Following flap elevation, root planing, and removal of granulation tissue, each device was adjusted to cover the furcation defect. The flaps were repositioned and sutured to complete coverage of the barriers. A second surgical procedure was performed at control sites after 4 to 6 weeks to remove the nonresorbable barrier. Radiographic and clinical examinations(plaque index, gingival index, tooth mobility, gingival margin position, pocket depth, clinical attachment level) were carried out under standardized conditions immediately before and 6 months after surgery. Furthermore, digital subtraction radiography was carried out. All areas healed uneventfully. Surgical treatment resulted in clinically and statistically equivalent changes when comparisons were made between test and control treatments. Changes in plaque index were 0.7 for test and 0.4 for control treatments; changes in gingival index were 0.9 and 0.5. In both group gingival margin position and pocket depth reduction was 1.0mm and 3.0mm; clinical attachment level gain was 1.9mm. There were no changes in tooth mobility and the bone in radiographic evaluation. No significant(p${\leq }$0.05) difference between the two membranes could be detected with regard to plaque index, gingival index, gingival margin position, pocket depth, and clinical attachment level. In conclusion, a bioabsorbable BioMesh membrane is effective in human mandibular Class II furcation defects and a longer period study is needed to fully evaluate the outcomes.

  • PDF

백서에서 Millipore filter membrane의 임계유지기간에 대한 연구 (STUDY ON THE CRITICAL MAINTENANCE PERIOD OF MILLIPORE FILTER MEMBRANE IN RATS)

  • 김미숙;여환호;김수관;임성철
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제28권4호
    • /
    • pp.274-279
    • /
    • 2002
  • The purpose of this study is to evaluate the critical maintenance period of absorbable membrane for guided bone regeneration. Fortynine Sprague-Dawley rats weighing about 300g were divided into seven groups. An 8 mm circular full-thickness defect in calvarial bone was made and then cellular acetate porous filter (Millipore $filter^{(R)}$.) was placed on the calvarial bone defect. The filter was removed at 2, 3, 4, 5, 6, 8 and 11 weeks after placement. Rats were sacrificed at 12 weeks the placement of cellular acetate porous filter. The specimens were stained with Hematoxylin-Eosin and observed under light microscope. The amount of regenerated bone was measured from both margin of calvarial bone defect (unit : mm). The results were as follows. Bone regeneration of each experimental group was increased gradually and the bond defect was almost completely filled with new bone in 5-, 6-, 8-, and 11-week experimental group. Histologic findings showed mild inflammatory response and granulation tissue formation without apparent adverse effects on the healing process. In 11-week experimental group, the bone defect was completely filled with new bone containing abundant osteoid which was oriented to the dural side and contribute to bony thickening. We suggest that non-absorbable membrane and bioabsorbable membrane presumably should remain intact for longer than 5 weeks to be effective.

성견 치근이개부 병소에서 흡수성 차폐막의 치주조직재생에 미치는 영향에 대한 조직병리학적 연구 (A Histo-Pathological Study of Effect on Periodontal Regeneration with Bioabsorbable Membrane on The Grade II Furcation Defects in Beagle Dogs)

  • 김재광;임성빈;정진형;이종헌
    • Journal of Periodontal and Implant Science
    • /
    • 제32권1호
    • /
    • pp.161-172
    • /
    • 2002
  • The present study evaluated the effects of guided tissue regeneration using xenograft material(deproteinated bovine bone powder), with and without biodegradable membrane in beagle dogs. Contralateral fenestration defects (6 ${\times}$ 4mm) were created 4 mm apical to the buccal alveolar crest of maxillary premolar teeth in 5 beagle dogs. Deproteinated bovine bone powders were implanted into fenestration defect and one randomly covered biodegradable membrane (experimental group). Biodegradable membrane was used to provide GTR. Tissue blocks including defects with soft tissues which were harvested following four & eight weeks healing interval, prepared for histo-phathologic analysis. The results of this study were as follows. 1. In control group, at 4 weeks after surgery, new bony trabecular contacted with interstitial tissue and osteocytes like cell were arranged in new bony trabecule. Bony lamellation was not observed. 2. In control gruop, at 8 weeks after surgery, scar-like interstitial tissue was filled defect and bony trabecule form lamellation. New bony trabecular was contacted with interstitial tissue but defect was not filled yet. 3. In experimental group, at 4 weeks after surgery, new bony trabecular partially recovered around damaged bone. But new bony trabecular was observed as irregularity and lower density. 4. In experimental group, at 8 weeks after surgery, lamella bone trabecular developed around bone cavity and damaged tissue was replaced with dense interstitial tissue. In conclusion, new bone formation regenerated more in experimental than control groups and there was seen observe more regular bony trabecular in experimental than control groups at 4 weeks after surgery. In control group, at 8 weeks after surgery, the defects was filled with scar-like interstitial tissue but, in experimental group, the defects was connected with new bone. Therefore xenograft material had osteoconduction but could not fill the defects. We thought that the effective regeneration of periodontal tissue, could be achieved using GTR with biodegradable membrane.

2급 치근이개부 치료 시 흡수성 차폐막, 동종골 이식 및 혈소판 농축 혈장의 골 재생 효과에 대한 디지털 공제술의 정량적 분석 (An Assessment on effect of Bioabsorbable membrane, allogenic bone and Platelet Rich Plasma in Class II furcation involvement by digital subtraction radiography)

  • 김상훈;임성빈;정진형
    • Journal of Periodontal and Implant Science
    • /
    • 제32권1호
    • /
    • pp.173-186
    • /
    • 2002
  • The purpose of this study was to evaluate effect of platelet rich plasma on the treatment of Grade II furcation involvement, with Demineralized Freeze-Dried Bone(Dembone(R)) and bioabsorable membrane(BioMesh(R)) in humans by digital subtraction radiography. 12 teeth(control group) were treated with Demineralized Freeze-Dried Bone(Dembone(R)) and bioabsorable membrane(BioMesh(R)), and 12 teeth(test group) were treated with Demineralized Freeze-Dried Bone(Dembone(R)), bioabsorable membrane(BioMesh(R)) and Platelet Rich Plasma. The change of bone density was assessed by digital subtraction radiography in this study. The change of mineral content by as much as 5%(vol) could be perceived in the subtracted images. The change of mineral content was assessed in the method that two radiographs are put into computer program to be overlapped and the previous image is subtracted by the later one. Both groups were statistically analyzed by Wilcoxon signed Ranks Test and Mann-whitney Test using SPSS program (5% significance level). The results were as follows: 1. In test group, the radiopacity in 3 months after surgery were significantly increased than 1 month after surgery(p<0.05). However. there were no significant difference between 1 month after surgery and 3 months after surgery in control group(p>0.05). 2. In test and control group, the radiopacity in 6 months after surgery were significantly increased than 1 month after surgery(p<0.05) 3. In test and control group, the radiopacity in 6 months after surgery were significantly increased than 3 months after surgery(p<0.05). 4. There were no significant difference between test group and control group at 1 month, 3 months after surgery, but radiopacity in test group were significantly increased than control group at 6 months after surgery(p<0.05). In conclusion, Platelet Rich Plasma can enhance bone density.

Dehydrothermal Treatment로 제작한 흡수성 콜라겐 골유도재생술 차단막 (Absorbable Guided Bone Regeneration Membrane Fabricated from Dehydrothermal Treated Porcine Collagen)

  • 방강미;정한울;김성포;양은경;김기호;김성민;김명진;장정원;이종호
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제33권2호
    • /
    • pp.112-119
    • /
    • 2011
  • Purpose: Collagen membranes are used extensively as bioabsorbable barriers in guided bone regeneration. However, collagen has different effects on tissue restoration depending on the type, structure, degree of cross-linking and chemical treatment. The purpose of this study was to evaluate the inflammatory reaction, bone formation, and degradation of dehydrothermal treated porcine type I atelocollagen (CollaGuide$^{(R)}$) compared to of the non-crosslinked porcine type I, III collagen (BioGide$^{(R)}$) and the glutaldehyde cross-linked bovine type I collagen (BioMend$^{(R)}$) in surgically created bone defects in rat mandible. Methods: Bone defect model was based upon 3 mm sized full-thickness transcortical bone defects in the mandibular ramus of Sprague-Dawley rats. The defects were covered bucolingually with CollaGuide$^{(R)}$, BioMend$^{(R)}$, or BioGide$^{(R)}$ (n=12). For control, the defects were not covered by any membrane. Lymphocyte, multinucleated giant cell infiltration, bone formation over the defect area and membrane absorption were evaluated at 4 weeks postimplantation. For comparison of the membrane effect over the bone augmentation, rats received a bone graft plus different covering of membrane. A $3{\times}4$ mm sized block graft was harvested from the mandibular angle and was laid and stabilized with a microscrew on the naturally existing curvature of mandibular inferior border. After 10 weeks postimplantation, same histologic analysis were done. Results: In the defect model at 4 weeks post-implantation, the amount of new bone formed in defects was similar for all types of membrane. Bio-Gide$^{(R)}$ membranes induced significantly greater inflammatory response and membrane resorption than other two membranes; characterized by lymphocytes and multinucleated giant cells. At 10 weeks postoperatively, all membranes were completely resorbed. Conclusion: Dehydrotheramal treated cross-linked collagen was safe and effective in guiding bone regeneration in alveolar ridge defects and bone augmentation in rats, similar to BioGide$^{(R)}$ and BioMend$^{(R)}$, thus, could be clinically useful.

수종의 흡수성 차단막의 생체 분해도와 조직학적 반응 (Resorbability and histological reaction of bioabsorbable membranes)

  • 석헌주;권석훈;김창성;최성호;전동원;김종관
    • Journal of Periodontal and Implant Science
    • /
    • 제32권4호
    • /
    • pp.781-800
    • /
    • 2002
  • The major goals of periodontal therapy are the functional regeneration of periodontal supporting structures already destructed by periodontal disease. There have been many efforts to develop materials and therapeutic methods to promote periodontal wound healing. With the development of non-resorbable membrane, GTR has proved to be the representive technique of periodontal regeneration. However, due to various clinical problems of non-resorbable membrane, resorbable membrane was developed and it showed to be clinically effective. The newly developed Para-Dioxanone membrane has a characteristic of non-woven fabric structures which is different from the generally used membranes with structure of mesh form. In addition, Chitosan membrane has been developed to apply its adventage maximally in GTR. Although a number of different types of membranes had been clinically used, researches on absorption rate of membranes were inadequate and limited to subjective opinions. However, since long term period of resorption and space maintenance are required in implant or ridge augmentation, accurate verification of resorption rate is clinically important. In this study, we had implanted Resolut(R), Biomesh(R), Para-Dioxanone membrane and Chitosan membrane (Size : 4mm ${\times}$ 4mm) on dorsal side of Sprague Dawley rat, and sacrified them after 4 weeks, 8 weeks, 12 weeks respectively. Histologic observation was carried out, and the following results were obtained by calculating the objective resorption rate. 1. In case of Resolut(R), external resorption took place initially, followed by internal resorption. Surface area are 5.76${\pm}$2.37$mm^2$, 4.90${\pm}$l.06$mm^2$, 4.90${\pm}$0.98$mm^2$ at 4 weeks, 8 weeks, 12 weeks respectively, and invasion rate of connective tissue to membrane are 31.6${\pm}$4.5%, 52.8${\pm}$9.4%, 56.4${\pm}$5.1% respectively. 2. Biomesh(R) showed a pattern of folding, relatively slow resorption rate with small size of membrane. Surface area are 3.62${\pm}$0.82$mm^2$, 3.63${\pm}$0.76$mm^2$, 4.07${\pm}$1.14$mm^2$ at 4 weeks, 8 weeks, 12 weeks respectively, and invasion rate of connective tissue to membrane are 26.1${\pm}$5.8%, 30.9${\pm}$3.4%, 29.2${\pm}$3.6%, respectively. 3. Para-Dioxanone membrane was surrounded by fibrous conncetive tissue externally, and resorption took place internally and externally. Surface area are 5.96${\pm}$1.05$mm^2$, 4.77${\pm}$10.76$mm^2$, 3.86${\pm}$0.84$mm^2$ at 4 weeks, 8 weeks, 12 weeks respectively, and invasion rate of connective tissue to membrane are 30.7${\pm}$5.1%, 53.3${\pm}$4.4%, 69.5${\pm}$3.1%, respectively. 4. Each fiber of Chitosan membrane was surrounded by connective tissue and showed external resorption pattern. It showed little invasion of inflammatory cells and excellent biocompatability. The resorption rate was relatively slow. Surface area are 6.01${\pm}$2.01$mm^2$, 5.49${\pm}$1.3$mm^2$, 5.06${\pm}$1.38$mm^2$ at 4 weeks, 8 weeks, 12 weeks respectively, and invasion rate of connective tissue to membrane are 31.3${\pm}$3.6%, 38.4${\pm}$3.80%, 39.7${\pm}$5.6%, respectively. Consequently, Para-Dioxanone membrane and Chitosan membrane are found to be clinically effective for their excellent tissue reaction and biocompatibility. Futhermore, the advantage of bone regenerating ability as well as the relatively long resorption period of Chitosan membrane, it might be widely used in implant or ridge augmentation.