• Title/Summary/Keyword: Bio-system

Search Result 3,448, Processing Time 0.039 seconds

The Effect of Root Zone Cooling at Night on Substrate Temperature and Physiological Response of Paprika in Hot Climate (고온기 야간시간 근권냉방이 파프리카 배지온도와 생리적 반응에 미치는 영향)

  • Choi, Ki Young;Ko, Ji Yeon;Choi, Eun Young;Rhee, Han Cheol;Lee, Sung Eun;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.349-354
    • /
    • 2013
  • This study examined a technique for cooling root zone aimed at lowering substrate temperature for sweet pepper (Capsicum annum L. 'Orange glory') cultivation in coir substrate hydroponics during hot season, from the $16^{th}$ of July to $15^{th}$ of October in 2012. The root zone cooling technique was applied by using an air duct (${\varnothing}12$ cm, hole size 0.1 mm) to blow cool air between two slabs during night (5p.m. to 3a.m.). Between the $23^{rd}$ of July and $31^{st}$ of August (hot temperature period), average daily substrate temperature was $24.7^{\circ}C$ under the root zone cooling, whereas it was $28.2^{\circ}C$ under condition of no cooling (control). In sunny day (600~700 W $m^{-2}{\cdot}s^{-1}$), average substrate temperatures during the day (6a.m. to 8p.m.) and night (8p.m. to 6a.m.) were lower about $1.7^{\circ}C$ and $3.3^{\circ}C$, respectively, under the cooling treatment, compared to that of control. The degree of temperature reduction in the substrate was averagely $0.5^{\circ}C$ per hour under the cooling treatment during 6p.m. to 8p.m.; however, there was no decrease in the temperature under the control. The temperature difference between the cooling and control treatments was $1.3^{\circ}C$ and $0.6^{\circ}C$ in the upper and lower part of the slab, respectively. During the hot temperature period, about 32.5% reduction in the substrate temperature was observed under the cooling treatment, compared to the control. Photosynthesis, transpiration rate, and leaf water potential of plants grown under the cooling treatment were significantly higher than those under the control. The first flowering date in the cooling was faster about 4 days than in the control. Also, the number of fruits was significantly higher than that in the control. No differences in plant height, stem thickness, number of internode, and leaf width were found between the plants grown under the cooling and control, except for the leaf length with a shorter length under the cooling treatment. However, root zone cooling influenced negligibly on eliminating delay in fruiting caused by excessively higher air temperature (> $28^{\circ}C$), although the substrate temperature was reduced by $3^{\circ}C$ to $5.6^{\circ}C$. These results suggest that the technique of lowering substrate temperature by using air-duct blow needs to be incorporated into the lowering growing temperature system for growth and fruit set of health paprika.

Comparison Study of Water Tension and Content Characteristics in Differently Textured Soils under Automatic Drip Irrigation (자동점적관수에 의한 토성별 수분함량 및 장력 변화특성 비교 연구)

  • Kim, Hak-Jin;Ahn, Sung-Wuk;Han, Kyung-Hwa;Choi, Jin-Yong;Chung, Sun-Ok;Roh, Mi-Young;Hur, Seung-Oh
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.341-348
    • /
    • 2013
  • Maintenance of adequate soil tension or content during the period of crop growth is necessary to support optimum plant growth and yields. A better understanding of soil tension and content for precision irrigation would allow optimal soil water condition to crops and minimize the adverse effects of water stress on crop growth and development. This research reports on a comparison of soil water tension and content variations in differently textured soils over time under drip irrigation using two different water management methods, i.e. pulse time and required water irrigation methods. The pulse time-based irrigation was performed by turning the solenoid valve on and off for preset times to allow the wetting front to disperse in root zone before additional water was applied. The required water estimation method was a new water control logic designed by Rural Development Administration that applies the amount of water required based on a conversion of the measured water tension into water content. The use of the pulse time irrigation method under drip irrigation at a high tension of -20 kPa and high temperatures over $30^{\circ}C$ was not successful at maintaining moisture tensions within an appropriate range of 5 kPa because the preset irrigation times used for water control could not compensate for the change in evapotranspiration during day and night. The response time and pattern of water contents for all of the tested soils measured with capacitance-based sensor probes were faster and more direct than those of water tensions measured with porous and ceramic cup-based tensiometers when water was applied, indicating water content would be a better control variable for automatic irrigation. The required water estimation-based irrigation method provided relatively stable control of moisture tension, even though somewhat lower tension values were obtained as compared to the target tension of -20 kPa, indicating that growers could expect to be effective in controlling low tensions ranging from -10 to -20 kPa with the required water estimation system.

Effects of Artificial Light Sources on the Photosynthesis, Growth and Phytochemical Contents of Butterhead Lettuce (Lactuca sativa L.) in the Plant Factory (식물공장에서 인공광원의 종류가 반결구상추의 광합성, 생육 및 기능성물질 함량에 미치는 영향)

  • Kim, Dong Eok;Lee, Hye Jin;Kang, Dong Hyeon;Lee, Gong In;Kim, You Ho
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.392-399
    • /
    • 2013
  • This study aimed to investigate responses of photosynthesis, plant growth, and phytochemical contents to different artificial light sources for 'Seneca RZ' and 'Gaugin RZ' two butterhead lettuce (Lactuca sativa L.). In this study, fluorescent lamps (FL), three colors LEDs (red, blue and white, 5 : 4 : 1; RBW) and metalhalide lamps (MH) were used as artificial lighting sources. Photoperiod, air temperature, relative humidity, EC, and pH in a cultivation system were maintained at 16/8 h, $25/15^{\circ}C$, 60~70%, $1.4{\pm}0.2dS{\cdot}m^{-1}$, and $6.0{\pm}0.5$, respectively. The photosynthetic rate of both two butterhead lettuce were the highest under RBW in middle growth stage. However, in late growth stage, the photosynthetic rate of both two butterhead lettuce were higher under RBW and MH than FL. The light sources showed significant results for plant growth but those effects were different to variety. Fresh and dry weight of 'Gaugin RZ' butterhead lettuce under MH were heavier than other lights in all growth stages. Growth of 'Seneca RZ' butterhead lettuce was maximized highest under MH in middle growth stage and FL in late growth stage. In the leaf tissue of 'Seneca RZ' butterhead lettuce, tipburn symptom occurred under all light sources and in the leaf tissue of 'Gaugin RZ' butterhead lettuce, it occurred under two light sources except for fluorescent lamps in late growth stage. kinds of lamp affect plant growth more than plant quality. Relative growth rate of both two butterhead lettuce was faster in middle growth stage than late stage. Growth of 'Gaugin RZ' was shown by kinds of lamp in middle growth stage and but it was not significantly affected by light sources and variety in late stage. Most of the phytochemical contents of two butterhead lettuce were significantly affected by different light sources. Contents of all vitamins showed higher than other light sources on RBW for both two lettuce, especially ${\beta}$-Carotene content of 'Gaugin RZ' was the highest. Plant growth, photosynthesis, and phytochemical contents were observed significant effects by different light sources for two butterhead lettuce but those effects were highly different between variety and kinds of phytochemicals. Therefore, the selection of optimum light source should be considered by variety and kinds of phytochemicals in the plant factory.

Anti-Melanogenic, Anti-Wrinkle, Anti-Inflammatory and Anti-Oxidant Effects of Xylosma congesta leaf Ethanol Extract (산유자 잎 에탄올 추출물의 미백, 주름억제, 항염증 및 항산화 효능)

  • Lee, Jae Yeon;Ahn, Eun-Kyung;Ko, Hye-Jin;Cho, Young-Rak;Ko, Woon Chul;Jung, Yong-Hwan;Choi, Kyung-Min;Choi, Mi-Rae;Oh, Joa Sub
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.4
    • /
    • pp.365-371
    • /
    • 2014
  • In the present study, we investigated the biological activities of Xylosma congesta leaf ethanol extract (XCO) using a variety of in vitro and cell culture model systems for anti-melanogenic, anti-wrinkle, anti-inflammatory and anti-oxidant activities. First, XCO markedly inhibited ${\alpha}$-melanocyte stimulating hormone-stimulated melanin synthesis in B16F10 cells. Secondly, XCO marginally induced procollagen synthesis in CCD-986SK cells. Thirdly, XCO dose-dependently suppressed lipopolysaccharide-induced nitric oxide (NO) production in RAW 264.7 cells. XCO did not affect cell viability at different concentrations used in this study, indicating that XCO-mediated inhibition of melanin, procollagen and NO synthesis is not mediated by cytotoxicity. Finally, XCO was found to exert anti-oxidant effect. Taken together, these findings demonstrate for the first time that XCO possesses anti-melanogenic, anti-wrinkle, anti-inflammatory and anti-oxidant activities, and suggest further evaluation and development of XCO as a functional supplement or cosmetic that may be useful for whitening skin, reducing wrinkles and treating inflammatory responses.

Establishment of Minimum Harvesting Time for the Girdled 'Campbell Early' Grape (환상박피된 '캠벨얼리' 포도의 최소 수확시기 설정)

  • Park, Seo-Jun;Cheong, Sung-Min;Kim, Seung-Heui;Ryou, Myung-Sang;Lee, Han-Chan;Jeong, Seok-Tae
    • Journal of Bio-Environment Control
    • /
    • v.18 no.4
    • /
    • pp.502-507
    • /
    • 2009
  • This study was conducted to establish the minimum harvesting time of 'Campbell Early' grape with girdling of 8 years old vines by the investigation of fruit quality. Girdling was performed as 5~7mm width at 1.0m height with a Y-trellis system on July 5th at Gimcheon, Gyeongbuk province. Skin color, soluble solids contents, sugar content, organic acid, and titratable acidity were analyzed every seven days period after the girdling. From 14 days after the girdling, pericarp color changed quickly as compared to the control, and also decreased b value and increased a value of Hunter L were observed. The content of organic acids decreased quickly as 0.85% as compared to the control's one, 1.10%. Sugar-acid ratio increased rapidly from the 21days as 15.1 against 10.8 of the control at harvesting time. After 14days, sugar content was abruptly increased such as fructose and glucose, that is 7days faster than the control. In harvesting time, their contents were high as $64.5mg{\cdot}g^{-1}FW$ and $61.0mg{\cdot}g^{-1}FW$ as compared to $56.1mg{\cdot}g^{-1}FW$ and $53.7mg{\cdot}g^{-1}FW$ of the control respectively. Among the content of organic acids, malic acid decreased quickly than the control's one in coloring time. The content of tartaric acid was obviously lower as $4.13mg{\cdot}g^{-1}FW$ than the control's one, $5.96mg{\cdot}g^{-1}FW$ in harvesting time. From these results, we assume that the harvesting of girdled 'Campbell Early' grape should be started in 42days after the girdling, when sugar-acid ratio is above 15.

Effects of Light Intensity and Nutrient Solution Strength during Short Day Treatment on the Growth and Nutrient Absorption of Kalanchoe blossfeldiana 'Rako' in Ebb and Flow System and the Accumulation of Nutrients in Growing Medium (단일처리시기의 광도와 양액농도가 Ebb and Flow 재배시스템에서 재배한 칼랑코에(Kalanchoe blossfeldiana 'Rako')의 생육, 양분흡수 및 배지 양분집적에 미치는 영향)

  • Noh, Eun-Hee;Choi, Jong-Myoung;Son, Jung-Eek
    • Journal of Bio-Environment Control
    • /
    • v.20 no.3
    • /
    • pp.189-196
    • /
    • 2011
  • The objective of this study was to investigate the effects of light intensity and electrical conductivity (EC) of nutrient solution during short day treatment in an ebb and flow systems on the growth and nutrient uptake of potted Kalanchoe blossfeldiana 'Rako' and the nutrient accumulation of growing medium. Nutrient concentrations in the growing medium were also analyzed to investigate the accumulation rates of macro-nutrients such as T-N, P, K, Ca, and Mg, respectively. To achieve the objectives, plants were fed with a nutrient solution with 1.2, 1.8, or $2.4dS{\cdot}m^{-1}$ under three daily photosynthetic photon flux (PPF) of 4.26, 5.51, or $9.75mol{\cdot}m^{-2}{\cdot}d^{-1}$. Both light intensity and EC of nutrient solution significantly influenced the crop growth. The elevation of PPFs resulted in the increase of plant growth. For each light condition, plant growth, such as dry and fresh weight and leaf area, was the highest when the electrical conductivity of nutrient solution was controlled to $2.4dS{\cdot}m^{-1}$. However, growth was acceptable in the EC ranges from 1.8 to $2.4dS{\cdot}m^{-1}$. Both light intensity and EC of nutrient solution significantly influenced the uptake of nutrients in the solution tanks and the accumulation of nutrients in the growing medium. As the EC of nutrient solution was elevated, the absorption rates of $NO_3^-$, $PO_4^{-3}$, $K^+$, and $Mg^{2+}$ by crops and accumulation of those in growing medium increased, but the light intensity did not significantly influence the absorption rates. Based on the above results, the regression models were suggested for anticipating the macro-nutrient accumulations in growing medium.

Analysis of Structural Types and Design Factors for Fruit Tree Greenhouses (과수재배용 온실의 구조유형과 설계요소 분석)

  • Nam, Sang-Woon;Ko, Gi-Hyuk
    • Journal of Bio-Environment Control
    • /
    • v.22 no.1
    • /
    • pp.27-33
    • /
    • 2013
  • In order to provide basic data for the development of a controlled environment cultivation system and standardization of the structures, structural status and improvement methods were investigated for the fruit tree greenhouses of grape, pear, and peach. The greenhouses for citrus and grape cultivation are increasing while pear and persimmon greenhouses are gradually decreasing due to the advance of storage facilities. In the future, greenhouse cultivation will expand for the fruit trees which are more effective in cultivation under rain shelter and are low in storage capability. Fruit tree greenhouses were mostly complying with standards of farm supply type models except for a pear greenhouse and a large single-span peach greenhouse. It showed that there was no greenhouse specialized in each species of fruit tree. Frame members of the fruit tree greenhouses were mostly complying with standards of the farm supply type model or the disaster tolerance type model published by MIFAFF and RDA. In most cases, the concrete foundations were used. The pear greenhouse built with the column of larger cross section than the disaster tolerance type. The pear greenhouse had also a special type of foundation with the steel plate welded at the bottom of columns and buried in the ground. As the results of the structural safety analysis of the fruit tree greenhouses, the grape greenhouses in Gimcheon and Cheonan and the peach greenhouses in Namwon and Cheonan appeared to be vulnerable for snow load whereas the peach greenhouse in Namwon was not safe enough to withstand wind load. The peach greenhouse converted from a vegetable growing facility turned out to be unsafe for both snow and wind loads. Considering the shape, height and planting space of fruit tree, the appropriate size of greenhouses was suggested that the grape greenhouse be 7.0~8.0 m wide and 2.5~2.8 m high for eaves, while 6.0~7.0 m wide and 3.0~3.3 m of eaves height for the pear and peach greenhouses.

Comparisons of Growth and Fruit Quality of Citrullus lanatus cv. Mudeungsan and Citrullus vulgaris cv. Dalgona Grown in Fertigation and Soilless Culture (무등산수박과 달고나수박의 관비재배와 양액재배에 있어서 생육 및 과실품질의 비교)

  • 이범선;정순주;박순기
    • Journal of Bio-Environment Control
    • /
    • v.8 no.1
    • /
    • pp.19-29
    • /
    • 1999
  • This experiment was conducted to compare with the growth and fruit quality of Citrullus lanatus cv. Mudeungsan and Citrullus vulgaris cv. Dalgona grown in fertigation and soilless culture. Seeds were sown on April 16 and transplanted on April 24, 1998. Cultural systems used in fertigation and soilless culture beds using mixed substrate, coir dust (50%) and perlite (50%). In the plot of fertigation system, the number of leaves of cv. Dalgona were increased more than that of cv Mudeungsan, but leaf area shown inversed trend. Plant growth shown greater in soilless culture than those of fertigation culture. In regardless of cultural systems, soluble solid content in fruit was higher in the cv. Dalgona than that of cv. Mudeungsan, but fruit fresh weight was greater in cv. Mudeungsan compare to the cv Dalgona. Nitrate content in petiole sap of watermelon in regardless of cultivars and cultural systems was 11.4∼13.4mg/gFW on 15 days after transplanting, and then increased to 17.1∼20.6mg/gFW on the fruit growth stage. Phosphorous content was 3.7∼5.7mg/gFW in the early growth stage while decreased to 0.6∼1.1mg/gFW from maturing stage to harvesting stage. Potassium content was increased to 5.8∼6.6mg/gFW in the early growth stage while decreased to 4.0∼4.8mg/gFW from pollination stage to harvesting stage. Calcium content in spa petiole of watermelon was higher in soilless culture as 3.4∼4.1mg/gFW than 2.5∼3.5mg/gFW of fertigation culture, but calcium content in fertigation culture during maturing stage was higher than that of soilless culture. The tendency of magnesium uptake was higher in fertigation culture than that of soilless culture, and was similarly absorbed in the range of 0.9∼1.3mg/gFW in regardless of cultural method after pollination. It was demonstrated that cv. Mudeungsan can be adapted to soilless culture and improved the fruit quality. Consequently, hydroponic possibility for year round culture in the greenhouse was recognized.

  • PDF

Effect of Different Fertilization on Physiological Characteristics and Growth Performances of Eucalyptus pellita and Acacia mangium in a Container Nursery System (시비처리가 Eucalyptus pellita와 Acacia mangium 용기묘의 생리 및 생장 특성에 미치는 영향)

  • Cho, Min-Seok;Lee, Soo-Won;Bae, Jong-Hyang;Park, Gwan-Soo
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.123-133
    • /
    • 2011
  • The objective of this study was to find optimal nutrient condition of container seedling production of two tropical species for high seedling quality. This study was conducted to investigate photosynthesis, chlorophyll fluorescence, chlorophyll contents, and growth performances of container seedlings of Eucalyptus pellita and Acacia mangium growing under four different fertilization treatments (Con., $0.5\;g{\cdot}l^{-1}$, $1.0\;g{\cdot}l^{-1}$, and $2.0\;g{\cdot}l^{-1}$ fertilization). E. pellita showed outstanding photosynthetic capacity, photochemical efficiency, and chlorophyll contents at $1.0\;g{\cdot}l^{-1}$ fertilization. Meanwhile, E. pellita showed the highest photosynthetic capacity, photochemical efficiency, and chlorophyll contents at $2.0\;g{\cdot}l^{-1}$ fertilization, as fertilization rate were increased, those of A. mangium increased. Like physiological characteristics, Both E. pellita at $1.0\;g{\cdot}l^{-1}$ fertilization and A. mangium at $2.0\;g{\cdot}l^{-1}$ fertilization were higher root collar diameter, height, biomass, and seedling quality index than other treatments. These results showed that E. pellita at $1\;g{\cdot}l^{-1}$ fertilization and A. mangium at $2.0\;g{\cdot}l^{-1}$ fertilization is optimal nutrient condition, respectively. Moreover, fertilization rate controlling is very important for growth and seedling quality of container seedling.

Growth and Yield of Potato after Transplanting of Potato Plug Seedlings Grown at Different Plug Cell Size and Photoperiod (다른 플러그 셀 크기와 일장에서 생산된 감자 플러그 묘의 정식 후 생육과 수량)

  • Kim, Jeong-Man;Choi, Ki-Yeung;Kim, Yeng-Hyeon;Park, Eun-Seok
    • Journal of Bio-Environment Control
    • /
    • v.17 no.1
    • /
    • pp.26-31
    • /
    • 2008
  • This experiment were conducted to investigate the response of growth and yield of potato after transplanting of plug seedlings 'Superior' and 'Dejima' produced at different plug cell size (105, 162, and 288) and photoperiod (8/16, 12/12, and 16/8, day/night) for 20 days in controlled plant growth system. Growth and relative growth rate of plug seedling 'Superior' was affected by plug cell size and photoperiod at 7weeks after transplanting. Tuber weight of 'Superior' was increased as cell size and photoperiod increased. That of 'Dejima' was highest in 105 cell and different with photoperiod. At 90 days after transplanting, tuber weight ($258.9{\sim}471.9\;g/plant) of 'Superior' was high in 105 and 162 cell size and 16/8 hr photoperiod. That ($278.2{\sim}428.0\;g/plant$) of 'Dejima' was high in 105 cell size, but was not different with photoperiod. The number of tuber per plant was $2.6{\sim}6.9$ of 'Superior' and $2.2{\sim}3.6$ 'Dejima'. Tuber number per plant was not significantly different with cell size and photoperiod. The large tuber over 80 g was $32.0{\sim}50.9%$ of 'Superior' and $41.0{\sim}56.7%$ of 'Dejima'. The large tuber in 'Superior' and 'Dejima' lowered as the cell size decreased. The large tuber of 'Superior' increased as photoperiod increased, but that of 'Dejima' was not differed. As the results, the optimal plug cell size and photoperiod of potato seedling is considered to be below 162 cell and over 12 hr of photoperiod.