• Title/Summary/Keyword: Bio-sensor System

Search Result 294, Processing Time 0.022 seconds

Development of u-Lifecare Monitoring System Device (u-라이프케어 모니터링 시스템 단말기 개발)

  • Choi, Dong-Oun;Kang, Yun-Jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.7
    • /
    • pp.1533-1540
    • /
    • 2012
  • u-Life care device collect body bio formation, and classify and store them in exercise patterns. Afterwards, the devices send the data through bluetooth wireless communication to the smart phones which set Google Android operation system at regular intervals. The information is checked out through application. u-Life care device calculates calories spent a day after monitoring activity quantity with 3-axis acceleration sensor. The device judges the status of health through body data mining and consults tailored exercise treatment. When sending body data, the device sends them in smart phone through Blue Tooth wireless communication at once. So, as a strong point, the device doesn't need mobile gateway or home gateway used for sending to web server information sensed from exercise life care products.

Kegel Exercise System Using an Arduino sensor (아두이노 센서를 이용한 케겔 운동 시스템 설계)

  • Cha, Jea-Hui;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.198-201
    • /
    • 2015
  • Using Arduino with a pressure sensor to create an interest in modern health care program is aimed. Currently, Korea is estimated that there are 4.2 million people in total incontinence. Through the convergence of Bio Technology and InformationTechnology these patients it is easy and simple to induce urinary incontinence, erectile dysfunction treatment, etc., and to prevent the most effective pelvic floor muscle exercises (Kegel exercises below). The Kegel medical equipments which are currently sold in the market make users exercise by giving electrical stimulations compulsively. Users need to take off their bottoms and take the Femcon therapy in a closed room. This causes various restrictions of time, space and hygiene. This thesis designs a Kegel medical equipment which combines BT and IT, free form restraint in regard to space and hygiene, without the need to take off bottoms.

  • PDF

Optimal CO2 Enrichment Considering Emission from Soil for Cucumber Greenhouses

  • Lee, DongHoon;Lee, KyouSeung;Cho, Yong Jin;Choi, Jong-Myoung;Kim, Hak-Jin;Chung, Sun-Ok
    • Horticultural Science & Technology
    • /
    • v.30 no.5
    • /
    • pp.501-508
    • /
    • 2012
  • Reducing carbon dioxide ($CO_2$) exhaust has become a major issue for society in the last few years, especially since the initial release of the Kyoto Protocol in 1997 that strictly limited the emissions of greenhouse gas for each country. One of the primary sectors affecting the levels of atmospheric greenhouse gases is agriculture where $CO_2$ is not only consumed by plants but also produced from various types of soil and agricultural ecosystems including greenhouses. In greenhouse cultivation, $CO_2$ concentration plays an essential role in the photosynthesis process of crops. Optimum control of greenhouse $CO_2$ enrichment based on accurate monitoring of the added $CO_2$ can improve profitability through efficient crop production and reduce environmental impact, compared to traditional management practices. In this study, a sensor-based control system that could estimate the required $CO_2$ concentration considering emission from soil for cucumber greenhouses was developed and evaluated. The relative profitability index (RPI) was defined by the ratio of growth rate to supplied $CO_2$. RPI for a greenhouse controlled at lower set point of $CO_2$ concentration (500 ${\mu}mol{\cdot}mol^{-1}$) was greater than that of greenhouse at higher set point (800 ${\mu}mol{\cdot}mol^{-1}$). Evaluation tests to optimize $CO_2$ enrichment concluded that the developed control system would be applicable not only to minimize over-exhaust of $CO_2$ but also to maintain the crop profitability.

Development of Biofilter System for Ammonia Removal in Livestock Facility (축산 시설의 암모니아 가스 제거용 바이오 필터 시스템 개발)

  • 조성인;김명락;김유용;여운영
    • Journal of Biosystems Engineering
    • /
    • v.28 no.5
    • /
    • pp.457-464
    • /
    • 2003
  • The purpose of this study was to develop a pilot scale bio-filter system removing ammonia gas with microorganisms. The system consisted of chaff(filter medium), a blower, a temperature sensor, a moisture sensor, a solenoid valve, and a heating system. Temperature and moisture contents were controlled via a PC to provide the microorganisms with proper environment. The microorganisms used in this study were Bacillius. coagulans NLRI T-6 and Pseudononas. putida NLRI S-21 of bacilli. Performance tests were performed to evaluate gas removal rate during 20 days. The result was shown that the removal rate was high in early days and gradually dropped below 90% without injecting the microbes. However, it was shown that when injecting the microbes, the removal rate was almost 100% and pH value was maintained at between 7 and 9 during the whole twenty-day period.

Design and Implementation of sensor Network Based on UPnP Middlewere for Ubiquitous Healthcare System (U-헬스케어 시스템을 위한 UPnP기반센서 네트워크의 설계 및 구현)

  • Kang, Sung-In;Jean, Je-Hwan;Kim, Gwan-Hyung;Choi, Sung-Uk;Kim, Hae-Young;Oh, Am-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.4
    • /
    • pp.797-804
    • /
    • 2009
  • Recently, To provide various service for user, there are some trends to construct health care system using bio-sensors and wireless network technologies. Accordingly, An effective middleware is needed to manage and control the various bio-sensors. Also, it is important to extend network and interoperate the various application system in healthcare service. In this paper, we propose to be connected with network based on UPnP by design and implementation of UPnP-ZigBee bridge. The proposed UPnP-ZigBee bridge manage and control ZigBee sensor module effectively. we implemented and tested ECG, PPG, and environment sensor module based on ZigBee wireless network to apply in health care service.

Bio-monitoring System using Shell Valve Movements of Pacific Oyster (Crassostrea gigas) (Detecting Abnormal Shell Valve Movements Under Hypoxia Water using Hall Element Sensor) (참굴(Crassostrea gigas)의 패각운동을 이용한 생물모니터링 시스템 연구 (빈산소에서 홀 소자를 이용한 패각운동 측정))

  • Jeon, Jin-Young;Moon, Su-Yeon;Oh, Seok Jin
    • Journal of Marine Life Science
    • /
    • v.1 no.1
    • /
    • pp.25-30
    • /
    • 2016
  • We investigated the possibility of a bio-monitoring system for detecting hypoxic water in coastal area using shell valve movements of Pacific oyster (Crassostrea gigas), which showed most aquaculture production in Korea, with Hall element sensor. In filtrating water to confirm shell valve movement (SVM) under normal condition, it showed spikes which mean a relatively fast closing condition after opened condition of average 5~12 mm, and then the SVM showed back to opening condition slower than closing speed SVM numbers during light period were similar to that of dark period (p<0.05). When dissolved oxygen (DO) concentration was reduced from 7 mg l-1 to 3 mg l-1, SVM numbers were increasing with decreasing of DO, and showed abnormality SVMs as compare with normal condition. Moreover, in the condition of 2 mg l-1, Distance between light and left shell showed gradually decreased, and then we could not detected SVMs due to closed condition. Thus, if we quickly detect abnormal environmental variations as hypoxia water using bio-monitoring of SVM, it may be contribute to increased productivity by dramatically reducing damages in aquaculture.

Reliable Transmission of Bio-Data for IEEE 11073 PHD Standards at 6LoWPAN Multi-Hop Wireless Sensor Networks (6LoWPAN 멀티-홉 무선 센서 네트워크에서의 IEEE 11073 PHD 표준을 위한 신뢰성 있는 생체 정보 전송)

  • Woo, Yeon Kyung;Park, Jong Tae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.116-123
    • /
    • 2013
  • In mobile healthcare applications, the reliable transmission of the bio-data is very important. In this article, we present a reliable bio-data transmission technique for mobile healthcare monitoring service at 6LoWPAN multi-hop wireless networks. In particular, we expand IEEE 11073-20601 protocol, and propose the reliable path construction for 6LoWPAN aimed to reliably provide mobile healthcare service over wireless sensor network, using IPv6 network. 6LoWPAN is recognized possibility because it is agree with sensor network by raising Adaptation layer on the MAC layer to transmit IPv6 packets. In this article proposed minimize the algorithm complexity and reliability routing protocol because the 6LoWPAN devices are suitable for low cost, small size and battery that can be used to health care system environment. And detailed procedures and algorithms are presented. We the proposed method to prove the superiority of using NS-3 for compareing with AODV protocol.

A Compact Ka-Band Doppler Radar Sensor for Remote Human Vital Signal Detection

  • Han, Janghoon;Kim, Jeong-Geun;Hong, Songcheol
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.4
    • /
    • pp.234-239
    • /
    • 2012
  • This paper presents a compact K-band Doppler radar sensor for human vital signal detection that uses a radar configuration with only single coupler. The proposed radar front-end configuration can reduce the chip size and the additional RF power loss. The radar front-end IC is composed of a Lange coupler, VCO, and single balanced mixer. The oscillation frequency of the VCO is from 27.3 to 27.8 GHz. The phase noise of the VCO is -91.2 dBc/Hz at a 1 MHz offset frequency, and the output power is -4.8 dBm. The conversion gain of the mixer is about 11 dB. The chip size is $0.89{\times}1.47mm^2$. The compact Ka-band Doppler radar system was developed in order to demonstrate remote human vital signal detection. The radar system consists of a Ka-band Doppler radar module with a $2{\times}2$ patch array antenna, baseband signal conditioning block, DAQ system, and signal processing program. The front-end module size is $2.5{\times}2.5cm^2$. The proposed radar sensor can properly capture a human heartbeat and respiration rate at the distance of 50 cm.

An Energy Self-Sustainable Wireless Sensor System Based on a Microbial Fuel Cell (MFC) and Energy Harvester (EH) (미생물연료전지와 에너지 하베스팅에 기반한 에너지 자립형 무선 센서 시스템)

  • Yeo, Jeongjin;Park, Sojin;Lim, Jonghun;Yang, Yoonseok
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.5
    • /
    • pp.208-212
    • /
    • 2018
  • Microbial fuel cell (MFC) technology has been attractive since it can not only treat organic waste in an eco-friendly way by digesting it but also generate electricity by the unique metabolic process of microbes. However, it hasn't been employed in practical use until now because it is hard to integrate a small electricity up to an adequate amount of electric power and difficult to keep its bio-electric activity consistent. In this study, we combined an energy harvester with MFC (MFC-EH) to make the power-integration convenient and developed an energy self-sustainable wireless sensor system driven by a stable electric power produced by MFC-EH. Additionally, we build the low power application measuring data to be cast by the web in real-time so that it can be quickly and easily accessed through the internet. The proposed system could contribute to improvement of waste treatment and up-cycling technologies in near future.

Ultra-Low Power MICS RF Transceiver Design for Wireless Sensor Network (WSN 을 위한 초저전력 MICS RF 송수신기 기술 개요 및 설계 기법)

  • Gyu-won Kim;Yu-jung Kim;Junghwan Han
    • Transactions on Semiconductor Engineering
    • /
    • v.2 no.1
    • /
    • pp.9-16
    • /
    • 2024
  • This paper discusses the design of bio-implanted ultra-low-power MICS RF transceivers for wireless sensor networks. The 400 MHz MICS standard was considered for the implementation of the WBAN wireless sensor system, indirectly minimizing radio propagation losses in the human body and the inference with surrounding networks. This paper includes link budget, various transmission and reception architectures for a system design and ultra-low power transceiver circuit techniques for the implementation of RF transceivers that meet MICS standards.