• Title/Summary/Keyword: Bio-reduction

Search Result 756, Processing Time 0.024 seconds

Perilla frutescens Sprout Extracts Protected Against Cytokine-induced Cell Damage of Pancreatic RINm5F Cells via NF-κB Pathway (들깨 새싹 추출물의 췌장 RINm5F 세포에서 NF-κB 경로를 통한 사이토카인에 의한 손상 예방 효과)

  • Kim, Da Hye;Kim, Sang Jun;Jeong, Seung-Il;Yu, Kang-Yeol;Cheon, Chun Jin;Kim, Jang-Ho;Kim, Seon-Young
    • Journal of Life Science
    • /
    • v.27 no.5
    • /
    • pp.509-516
    • /
    • 2017
  • Perilla frutescens (L.) Britton var. sprouts (PFS) is a plant of the labiatae family. The purpose of this work was to assess the preventive effects of PFS ethanolic extracts (PFSEs) on cytokine-induced ${\beta}$-cell damage. Cytokines, which are released by the infiltration of inflammatory cells around the pancreatic islets, are involved in the pathogenesis of type 1 diabetes mellitus. The combination of interleukin-$1{\beta}$ (IL-1), interferon-${\gamma}$ (IFN-${\gamma}$), and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) induced formation of reactive oxygen species (ROS). Accumulation of intracellular ROS led to ${\beta}$-cell dysfunction and apoptosis. PFSEs possess antioxidant activity and thus lead to downregulation of ROS generation. Cytokines decrease cell viability, stimulate the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and induce the production of nitric oxide (NO). PFSEs prevented cytokine-induced cell viability in a dose-dependent manner. Incubation with PFSE resulted in significant reduction in cytokine-induced NO production that correlated with reduced levels of the iNOS and COX-2 protein expression. Furthermore, PFSE significantly decreased the activation of nuclear factor ${\kappa}B$ (NF-${\kappa}B$) by inhibition of $I{\kappa}B{\alpha}$ phosphorylation in RINm5F cells. In summary, our results suggest that the protective effects of PFSE might serve to counteract cytokine-induced ${\beta}$-cell destruction. Findings indicate that consumption of Perilla frutescens (L.) Britton var. sprouts alleviates hyperglycemia-mediated oxidative stress and pro-inflammatory cytokine-induced ${\beta}$-cell damage and thus has beneficial anti-diabetic effects.

The Effects of Low Calorie Meal and Weight Control Preparation on the Reduction of Body Weight and Visceral Fat in Obese Females (비만여성에서 저열량식사와 체중감량제 섭취에 의한 체중 및 체지방 감소 효과)

  • Park, Sun-Mi;Han, Dae-Seok;Kim, Dong-Woo;Lee, Sun-Yung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.9
    • /
    • pp.1492-1500
    • /
    • 2004
  • The purpose of this study was to evaluate the effects of low calorie meal substitute and weight control preparation containing dietary fibers, ${\alpha}$-amylase inhibitor and hydroxycitrate on the reduction of body weight and visceral fat in obese women. Sixteen pre-menoposal healthy women (age: 20∼50 y, body mass index >25) who were living in the Daejeon area participated in this study. We replaced one meal of the subject with low calorie meal substitute and fed the weight control preparation twice a day for 9 weeks. Anthropometric indices, body composition, dietary intake and stool movements were investigated every 3 weeks during the dietary intervention. The blood was collected before and after the dietary intervention. Results are as follows: 1) The subjects' body weight, body fat, BMI, waist, hip and abdominal adipose tissue decreased gradually and significantly between 3rd and 9th week after intervention. 2) The levels of fasting blood glucose, triglyceride and cholesterol, the indicators of liver dysfunction such as activities of ALT, AST and ALP, and bilirubin level were within a normal range and not affected significantly by dietary intervention. 3) Hemoglobin levels increased significantly and blood urea nitrogen level decreased. 4) Their stool movement was improved 5) Compared with the baseline values, calorie intake decreased by 17.5∼21.9% and the intakes of vitamin A, vitamin B2, folate, Ca, Fe, and Zn were below 80% of Korean RDA. In conclusion, the intake of low calorie meal substitute and weight control preparation could be effective in reduction of body weight and fat mass, improving the stool movement and the general physical symptoms.

A Study of Emulsion Fuel of Cellulosic Biomass Oil (목본계 바이오매스오일의 에멀젼 연료화 연구)

  • Kim, Moon-Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.836-847
    • /
    • 2016
  • Water soluble oil was obtained by pyrolysis of biomass. The characteristics of emulsified fuel by mixing water soluble oil and MDO(marine diesel oil) and engine emissions were studied with engine dynamometer. Saw dust was used as biomass. Water soluble oil was obtained by condensing of water and carbon content with pyrolysis of saw dust at $500^{\circ}C$. Emulsion fuel was obtained by emulsifying MDO and water soluble oil by the water soluble oil mixing ratio of 10 to 20% of MDO. Exhaust gas detection was performed with engine dynamometer. While combustion, micro-explosion took place in the combustion chamber by water in the emulsion fuel, emulsion fuel scattered to micro particles and it caused to smoke reduction. The heat produced from water vapour reduce the temperature of internal combustion chamber and it caused to inhibition of NOx production. It can be verified by the lower exhaust temperature of each ND-13 mode using emulsion fuel than that of MDO fuel. The NOx and smoke concentration were reduced by increasing water soluble oil content in the emulsion fuel. The power also decreased according to the increment of water soluble oil content of emulsion fuel because emulsion fuel has low calorific value due to high water content than MDO. As a result of ND-13 mode test with 20% bio oil content, it was achieved 25% reduction in NOx production, 60% reduction in smoke density, and 15% reduction in power loss.

Evaluation of DOM Variations and Reduction Effects in Bioreation Artificial Wetland (생물반응 인공습지 내 DOM 변동 및 저감효과 평가)

  • Joo, Kwangjin;Lee, Jongjun;Kim, Tea-Kyung;Choi, Isong;Chang, Kwang-hyeon;Joo, Jinchul;Oh, Jongmin
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.6
    • /
    • pp.582-594
    • /
    • 2018
  • In this study, the vertical and horizontal flow wetlands were combined in series to create conditions for flow in the exhalation and anaerobic state with the aim of monitoring the variability and reduction of dissolved organic matterin the bio-reactive artificial wetlands, and the performance assessment was conducted as acrylic reaction groups by designing artificial wetlands that filled the functionalresiduals. In case of artificial wetlands in vertical and horizontal planes, the concentration of dissolved oxygen (DO) in the reaction tank was measured as 2.7 mg/L in the vertical flow wetlands under exhalation, and N.D. in the horizontal flow artificial wetlands under anaerobic conditions. The test was carried out by changing the operation time to 140 min, 80 min, and 60 min. The test was conducted with the same natural operation time of 20 min depending on the operation time. All hours of operation were shown to be due to microbial activity. In 3D-EEM, it was found that the longer the driving time was taken, the more reduction the organic compounds in the areas of insoluble human resources, III and V. Further research on the mechanism analysis of future reduction effects is expected to be carried out, but the findings are expected to contribute to the development of technologies for reducing obfuscated substances using artificial wetlands in the future.

Effects of Dietary Levels of Glycine, Threonine and Protein on Threonine Efficiency and Threonine Dehydrogenase Activity in Hepatic Mitochondria of Chicks

  • Lee, C.W.;Cho, I.J.;Lee, Y.J.;Son, Y.S.;Kwak, I.;Ahn, Y.T.;Kim, S.C.;An, W.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.1
    • /
    • pp.69-76
    • /
    • 2014
  • This study was carried out to evaluate the relationship between threonine (Thr) efficiency and Thr dehydrogenase (TDG) activity as an indicator of Thr oxidation on chicks fed with levels of diets (CP [17.5% and 21.5%] and Thr [3.8 and 4.7 g/100 g CP]; glycine [Gly][0.64% and 0.98%] and true digestible Thr [dThr] [0.45% and 0.60%]). Calculation of the Thr efficiency was based on N-balance data and an exponential N-utilization model, and TDG activity was determined as accumulation of aminoacetone and Gly during incubation of hepatic mitochondria. This study found that in the liver of chicks who received a diet containing up to 0.79% Thr (4.7 g Thr/100 g of CP) in the 17.5% CP diet, no significant (p>0.05) effect on TDG activity was observed. However, significantly (p = 0.014) increased TDG activity was observed with a diet containing 21.5% CP (4.7 g Thr/100 g of CP) and the efficiency of Thr utilization showed a significant (p = 0.001) decrease, indicating the end of the Thr limiting range. No significant (p>0.05) effect on the total TDG activity and accumulation of Gly was observed with addition of Gly to a diet containing 0.45% dThr. In addition, addition of Gly to a diet containing 0.60% dThr also did not result in a change in accumulation of Gly. Due to an increase in accumulation of aminoacetone, an elevated effect on total TDG activity was also observed. No significant (p>0.05) reduction in the efficiency of Thr utilization was observed after addition of Gly at the level of 0.45% dThr. However, significantly (p<0.001) reduced efficiency of Thr utilization was observed after addition of Gly at the level of 0.60% dThr. Collectively, we found that TDG was stimulated not only by addition of Thr and protein to the diet, but also by addition of Gly, and efficiency of Thr utilization was favorably affected by addition of Gly at the level near to the optimal Thr concentration. In addition, no metabolic requirement of Gly through the TDG pathway was observed with almost the same accumulation of Gly and a slight increase in TDG activity by addition of Gly. Thus, our findings suggest that determination of TDG activity and parameter of efficiency of Thr utilization may be useful for evaluation of dietary Thr level.

Anti-inflammatory effect of polyphenol-rich extract from the red alga Callophyllis japonica in lipopolysaccharide-induced RAW 264.7 macrophages

  • Ryu, BoMi;Choi, Il-Whan;Qian, Zhong-Ji;Heo, Soo-Jin;Kang, Do-Hyung;Oh, Chulhong;Jeon, You-Jin;Jang, Chul Ho;Park, Won Sun;Kang, Kyong-Hwa;Je, Jae-Young;Kim, Se-Kwon;Kim, Young-Mog;Ko, Seok-Chun;Kim, GeunHyung;Jung, Won-Kyo
    • ALGAE
    • /
    • v.29 no.4
    • /
    • pp.343-353
    • /
    • 2014
  • Despite the extensive literature on marine algae over the past few decades, a paucity of published research and studies exists on red algae. The purpose of this study was to evaluate the potential therapeutic properties of the ethanol extract of the red alga Callophyllis japonica against lipopolysaccharide (LPS)-stimulated macrophage inflammation. The C. japonica extract (CJE) significantly inhibited the nitric oxide (NO) production and the induced dose-dependent reduction of the protein and mRNA levels of inducible nitric oxide synthase and cyclooxygenase-2. Additionally, the CJE reduced the mRNA levels of inflammatory cytokines, including tumor necrosis factor-${\alpha}$, interleukin (IL)-$1{\beta}$, and IL-6. We investigated the mechanism by which the CJE inhibits NO by examining the level of mitogen-activated protein kinases (MAPKs) activation, which is an inflammation-induced signaling pathway in macrophages. The CJE significantly suppressed the LPS-induced phosphorylation of c-Jun N-terminal kinase, extracellular signal-regulated kinase and p38 MAPK. Taken together, the results of this study demonstrate that the CJE inhibits LPS-induced inflammation by blocking the MAPK pathway in macrophages.

Effect of isoflavone-enriched whole soy milk powder supplementation on bone metabolism in ovariectomized mice

  • Kim, So Mi;Lee, Hyun Sook;Jung, Jae In;Lim, Su-Min;Lim, Ji Hoon;Ha, Wang-Hyun;Jeon, Chang Lae;Lee, Jae-Yong;Kim, Eun Ji
    • Nutrition Research and Practice
    • /
    • v.12 no.4
    • /
    • pp.275-282
    • /
    • 2018
  • BACKGROUND/OBJECTIVE: There is intense interest in soy isoflavone as a hormone replacement therapy for the prevention of postmenopausal osteoporosis. A new kind of isoflavone-enriched whole soy milk powder (I-WSM) containing more isoflavones than conventional whole soy milk powder was recently developed. The aim of this study was to investigate the effects of I-WSM on bone metabolism in ovariectomized mice. MATERIALS/METHODS: Sixty female ICR mice individually underwent ovariectomy (OVX) or a sham operation, and were randomized into six groups of 10 animals each as follows: Sham, OVX, OVX with 2% I-WSM diet, OVX with 10% I-WSM diet, OVX with 20% I-WSM diet, and OVX with 20% WSM diet. After an 8-week treatment period, bone mineral density (BMD), calcium, alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) 5b, osteocalcin (OC), procollagen 1 N-terminal propeptide (P1NP), and osteoprotegenin (OPG) were analyzed. RESULTS: BMD was significantly lower in the OVX group compared to the Sham group but was significantly higher in OVX + 10% I-WSM and OVX + 20% I-WSM groups compared to the OVX group (P < 0.05). Serum calcium concentration significantly increased in the OVX + 10% and 20% I-WSM groups. Serum ALP levels were significantly lower in the OVX + 10% and 20% I-WSM groups compared to the other experimental groups (P < 0.05). OC was significantly reduced in the OVX group compared to the Sham group (P < 0.05), but a dose-dependent increase was observed in the OVX groups supplemented with I-WSM. P1NP and OPG levels were significantly reduced, while TRAP 5b level was significantly elevated in the OVX group compared with the Sham group, which was not affected by I-WSM (P < 0.05). CONCLUSIONS: This study suggests that I-WSM supplementation in OVX mice has the effect of preventing BMD reduction and promoting bone formation. Therefore, I-WSM can be used as an effective alternative to postmenopausal osteoporosis prevention.

Development of Optimal Nutrient Solution of Cherry Tomato (Lycopersicon esculentum Mill. 'KoKo') in a Closed Soilless Culture System (순환식 수경재배에 적합한 방울토마토 '꼬꼬' 배양액 개발)

  • Yu Sung-Oh;Choi Ki-Young;Jeon Kyung-Soo;Bae Jong-Hyang
    • Journal of Bio-Environment Control
    • /
    • v.15 no.1
    • /
    • pp.69-77
    • /
    • 2006
  • The experiment was conducted to investigate the nutrition absorption pattern in the growth stage and develope the optimal nutrient solution hydroponically grown the cherry tomato 'Koko' in closed substrate culture system with the nutrient solution of National Horticultural Research Station in Japan into 1/2S, 1S, and 2S. When plant was grown in 1/2S, the growth and yield were high and the pH and EC in the root zone were stable. Suitable composition of nutrient solution for cherry tomato was $NO_3-N\;6.8,\;PO_4-P\;2.7,\;K 3.2,\;Ca\;3.6\;and\;Mg\;1.1\;me\;L^{-1}$ in the early growth stage, $NO_3-N\;7.3,\;PO_4-P\;2.2,\;K\;3.7,\;Ca\;3.6;and\;Mg\;1.1\;me\;L^{-1}$ in the late growth stage by calculating a rate of nutrient and water uptake. To estimate the suitability for the nutrient solution in a development of cherry tomato developed by Wongkwang university in Korea (WU), plant was grown in perlite substrate supplied with different solution and strengths(S) by research station for greenhouse vegetable and floriculture in the Netherlands (Proefstation voor tuinbouw onder glas th Mssldwijk; PTG) of 1/2S, 1S, and 2S, respectively. The growth was good at the PTG and WU 2S in the early stage and the PTG of 1S and WU of 1S and 2S in the late stage. The highest yield of cherry tomato obtained in the WU of 2S. pH and EC in root zone of WU of 2S were stable during the early and late growth stage. Therefore when cherry tomato plant was grown in WU of 2S of EC $1.6{\sim}2.0\;dS\;m^{-1}$in the nutrient solution, not only stable growth and yield but also fertilizer reduction can be obtained than that of PTG.

Prostaglandin E2 Reverses Curcumin-Induced Inhibition of Survival Signal Pathways in Human Colorectal Carcinoma (HCT-15) Cell Lines

  • Shehzad, Adeeb;Islam, Salman Ul;Lee, Jaetae;Lee, Young Sup
    • Molecules and Cells
    • /
    • v.37 no.12
    • /
    • pp.899-906
    • /
    • 2014
  • Prostaglandin $E_2$ ($PGE_2$) promotes tumor-persistent inflammation, frequently resulting in cancer. Curcumin is a diphenolic turmeric that inhibits carcinogenesis and induces apoptosis. $PGE_2$ inhibits curcumin-induced apoptosis; however, the underlying inhibitory mechanisms in colon cancer cells remain unknown. The aim of the present study is to investigate the survival role of $PGE_2$ and whether addition of exogenous $PGE_2$ affects curcumininduced cell death. HCT-15 cells were treated with curcumin and $PGE_2$, and protein expression levels were investigated via Western blot. Reactive oxygen species (ROS) generation, lipid peroxidation, and intracellular glutathione (GSH) levels were confirmed using specific dyes. The nuclear factor-kappa B ($NF-{\kappa}B$) DNA-binding was measured by electrophoretic mobility shift assay (EMSA). $PGE_2$ inhibited curcumin-induced apoptosis by suppressing oxidative stress and degradation of PARP and lamin B. However, exposure of cells to the EP2 receptor antagonist, AH6809, and the PKA inhibitor, H89, before treatment with $PGE_2$ or curcumin abolished the protective effect of $PGE_2$ and enhanced curcumin-induced cell death. $PGE_2$ activates PKA, which is required for cAMP-mediated transcriptional activation of CREB. $PGE_2$ also activated the Ras/Raf/Erk pathway, and pretreatment with PD98059 abolished the protective effect of $PGE_2$. Furthermore, curcumin treatment greatly reduced phosphorylation of CREB, followed by a concomitant reduction of $NF-{\kappa}B$ (p50 and p65) subunit activation. $PGE_2$ markedly activated nuclear translocation of $NF-{\kappa}B$. EMSA confirmed the DNA-binding activities of $NF-{\kappa}B$ subunits. These results suggest that inhibition of curcumin-induced apoptosis by $PGE_2$ through activation of PKA, Ras, and $NF-{\kappa}B$ signaling pathways may provide a molecular basis for the reversal of curcumin-induced colon carcinoma cell death.

Phosphate solubilizing effect by two Burkholderia bacteria isolated from button mushroom bed (양송이배지로부터 분리한 두 Burkholderia 속 세균에 의한 인산가용화 효과)

  • Oh, Jong-Hoon;Kim, Young-Jun;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.18 no.3
    • /
    • pp.208-213
    • /
    • 2020
  • Burkholderia contaminans PSB-A and Burkholderia ambifaria PSB-B were isolated from button mushroom bed to estimate their phosphate solubility. The phosphate-solubilizing abilities of these strains were assessed by measuring the phosphorus content in a single and co-inoculation medium for 7 days. The co-inoculation of these two strains released the highest content of soluble phosphorus (166.3 ㎍ mL-1) into the medium, followed by single inoculation of B. contaminans PSB-A (143.73 ㎍ mL-1) and B. ambifaria PSB-B (127.1 ㎍ mL-1). The highest pH reduction, organic acid production, and glucose consumption were also observed in the co-inoculation medium. According to the plant growth promotion bioassay, co-inoculation enhanced the growth of romaine lettuce much more than the single inoculation (20.4% for leaf widths and 16.6% for root lengths). Although no significant difference was noted between single and co-inoculation of bacterial strains in terms of phosphorous release and plant growth, co-inoculation of PSB may have a beneficial effect on crop growth due to a synergistic effect between the strains.