Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.5.509

Perilla frutescens Sprout Extracts Protected Against Cytokine-induced Cell Damage of Pancreatic RINm5F Cells via NF-κB Pathway  

Kim, Da Hye (Jeonju AgroBio-Materials Institute)
Kim, Sang Jun (Jeonju AgroBio-Materials Institute)
Jeong, Seung-Il (Jeonju AgroBio-Materials Institute)
Yu, Kang-Yeol (Jeonju AgroBio-Materials Institute)
Cheon, Chun Jin (Aenong Association)
Kim, Jang-Ho (Department of Integrated Bio-Resource Science, General Graduate School of Jeonju University)
Kim, Seon-Young (Jeonju AgroBio-Materials Institute)
Publication Information
Journal of Life Science / v.27, no.5, 2017 , pp. 509-516 More about this Journal
Abstract
Perilla frutescens (L.) Britton var. sprouts (PFS) is a plant of the labiatae family. The purpose of this work was to assess the preventive effects of PFS ethanolic extracts (PFSEs) on cytokine-induced ${\beta}$-cell damage. Cytokines, which are released by the infiltration of inflammatory cells around the pancreatic islets, are involved in the pathogenesis of type 1 diabetes mellitus. The combination of interleukin-$1{\beta}$ (IL-1), interferon-${\gamma}$ (IFN-${\gamma}$), and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) induced formation of reactive oxygen species (ROS). Accumulation of intracellular ROS led to ${\beta}$-cell dysfunction and apoptosis. PFSEs possess antioxidant activity and thus lead to downregulation of ROS generation. Cytokines decrease cell viability, stimulate the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and induce the production of nitric oxide (NO). PFSEs prevented cytokine-induced cell viability in a dose-dependent manner. Incubation with PFSE resulted in significant reduction in cytokine-induced NO production that correlated with reduced levels of the iNOS and COX-2 protein expression. Furthermore, PFSE significantly decreased the activation of nuclear factor ${\kappa}B$ (NF-${\kappa}B$) by inhibition of $I{\kappa}B{\alpha}$ phosphorylation in RINm5F cells. In summary, our results suggest that the protective effects of PFSE might serve to counteract cytokine-induced ${\beta}$-cell destruction. Findings indicate that consumption of Perilla frutescens (L.) Britton var. sprouts alleviates hyperglycemia-mediated oxidative stress and pro-inflammatory cytokine-induced ${\beta}$-cell damage and thus has beneficial anti-diabetic effects.
Keywords
Cytokines; diabetes; NF-${\kappa}B$; Perilla frutescents; RINm5F;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Eppens, M. C., Craig, M. E., Cusumano, J., Hing, S., Chan, A. K., Howard, N. J. and Donaghue, K. 2006. Prevalence of diabetes complications in adolescents with type 2 compared with type 1 diabetes. Diabetes Care 29, 1300-1306.   DOI
2 Evans, J. L., Goldfine, I. D., Maddux, B. A. and Grodsky, G. M. 2002. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr. Rev. 23, 599-622.   DOI
3 Fan, C., Li, Q., Ross, D. and Engelhardt, J. F. 2003. Tyrosine phosphorylation of $I{\kappa}B{\alpha}$ activates NF-${\kappa}$B through a redox- regulated c-Src-dependent mechanism following hypoxia/ reoxygenation. J. Biol. Chem. 278, 2072-2080.   DOI
4 Foulis, A. K., Liddle, C. N., Farquharson, M. A., Richmond, J. A. and Weir, R. S. 1986. The histopathology of the pancreas in type I (insulin-dependent) diabetes mellitus: a 25-year review of deaths in patients under 20 years of age in the United Kingdom. Diabetologia 29, 267-274.   DOI
5 Guariguata, L., Whiting, D. R., Hambleton, I., Beagley, J., Linnenkamp, U. and Shaw, J. E. 2014. Global estimates of diabetes prevalence for 2013 and projections for 2035, Diabetes Res. Clin. Pract. 103, 137-149.   DOI
6 Ha, K. H. and Kim, D. J. 2016. Current status of managing diabetes mellitus in Korea. Kor. J. Intern. Med. 31, 845-850.   DOI
7 Heci, Y. 2001. Valuable ingredients form herb perilla: a mini review. Innov. Food Technol. 29, 32-33.
8 Kim, E. K., Kwon, K. B., Han, M. J., Song, M. Y., Lee, J. H., Lv, N. and Park, B. H. 2007. Inhibitory effect of Artemisia capillaris extract on cytokine-induced nitric oxide formation and cytotoxicity of RINm5F cells. Int. J. Mol. Med. 19, 535-540.
9 Jacob, R. A. 1995. The integrated antioxidant system. Nutr. Res. 15, 755-766.   DOI
10 Jeong, S. I., Kim, H. S., Jeon, I. H., Kang, H. J., Mok, J. Y., Cheon, C. J., Yu, H. H. and Jang, S. I. 2014. Antioxidant and anti-inflammatory effects of ethanol extracts from Perilla fructescens. Kor. J. Food Sci. Technol. 46, 87-93.   DOI
11 Lee, J. K. and Ohnishi, O. 2003. Genetic relationships among cultivated types of Perilla frutescens and their weedy types in East Asia revealed by AFLP markers. Genet. Resour. Crop Evol. 50, 65-74.   DOI
12 Mandrup-Poulsen, T. 2003. Apoptotic signal transduction pathways in diabetes. Biochem. Pharmcaol. 66, 1433-1440.   DOI
13 Park, C. H., Kim, D. I., Shin, E. J., Lee, G. D., Kim, J. O., Kim, K. S. and Hong, J. H. 2008. Effect of Bulnesia sarmienti ethanol extract on plasma levels of glucose and lipid in streptozotocin induced diabetic rats. Kor. J. Food Sci. 40, 455-459.
14 Baeuerle, P. A. and Henkel, T. 1994. Function and activation of NF-kappaB in the immune system. Annu. Rev. Immunol. 12, 141-179.   DOI
15 Rastogi, R. P., Singh, S. P., Hader, D. P. and Sinha, R. P. 2010. Detection of reactive oxygen species (ROS) by the oxidant- sensing probe 2', 7'-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem. Bioph. Res. Commun. 397, 603-607.   DOI
16 Southern, C., Schulster, D. and Green, I. C. 1990. Inhibition of insulin secretion by interleukin‐1${\beta}$ and tumour necrosis factor‐${\alpha}$ via an L‐arginine‐dependent nitric oxide generating mechanism. FEBS lett. 276, 42-44.   DOI
17 Van den Berg, R., Haenen, G. R., van den Berg, H. and Bast, A. A. L. T. 1999. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem. 66, 511-517.   DOI
18 Viatour, P., Merville, M. P., Bours, V. and Chariot, A. 2005. Phosphorylation of NF-kB and IkB proteins: implications in cancer and inflammation. Trends Biochem. Sci. 50, 43-52.
19 Yu, H., Qiu, J. F., Ma, Li. J., Hu, Y. J., Li, P. and Wan, J. B. 2016. Phytochemical and phytopharmacological review of Perilla frutescens L. (Labiatae), a traditional edible-medicinal herb in China. Food Chem. Toxicol. doi:10.1016/j.fct.2016.11.023.   DOI
20 Arnao, M. B., Cano, A. and Acosta, M. 2001. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 73, 239-244.   DOI
21 Baldwin, A. S. Jr. 1996. The NF-${\kappa}$B and I${\kappa}$B proteins: new discoveries and insights. Annu. Rev. Immunol. 14, 649-681.   DOI
22 Eizirik, D. L., Flodström, M., Karlsen, A. E. and Welsh, N. 1996. The harmony of the spheres: inducible nitric oxide synthase and related genes in pancreatic beta cells. Diabetologia 39, 875-890.
23 Baynes, J. W. 1991. Role of oxidative stress in development of complications in diabetes. Diabetes 40, 405-412.
24 Bredt, D. S. and Snyder, S. H. 1994. Nitric oxide: a physiologic messenger molecule. Annu. Rev. Biochem. 63, 175-195.   DOI
25 Celec, P. 2004. Nuclear factor kappa B-molecular biomedicine: the next generation. Biomed. Pharmacother. 58, 365-371.   DOI
26 Eizirik, D. L., Sandler, S., Welsh, N., Cetkovic-Cvrlje, M., Nieman, A., Geller, D. A. and Hellerström, C. 1994. Cytokines suppress human islet function irrespective of their effects on nitric oxide generation. Clin. Investigator. 93, 1968.   DOI