• Title/Summary/Keyword: Bio-impedance

Search Result 108, Processing Time 0.019 seconds

Analysis of Meridian Response by Sound Stimulus in Body (음향 자극에 의한 인체 경락의 반응분석)

  • Kim, Yong-Chin;Jeong, Dong-Myong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.3
    • /
    • pp.47-54
    • /
    • 2001
  • This study is to analyze the impedance response in human body by acoustic stimulation on acupoints and contrast parte; for objectification of the meridian substance. It is to verify meridian pathway and channel theory or bio-energy in body. This paper proposes to make an hypothesis about the underground water theory. The meridian has not tube or pipe line type channel but bio-energy flow along the channel similar to flowing pattern of underground water in body. It was analyzed the current characteristic or impedance response after acoustic stimulation by sound wave of 5 specific tones. The response characteristics of current stimulation are measured by the average current magnitude and variation ratio or meridian. The current variation ratio or Live Meridian(gung) 33.2%, Heart Meridian(sang) 30.7% Kidney Meridian (gak) 33.1%, Spleen Meridian(chi) 33.9%, Lung Meridian (wo) 30.7% are to be compared to contrast parts (non-acupoint and meridian). In experimental results, meridian is discrimination to non-meridian, and 5 vital meridians have a reciprocal relationship with sound wave of 5 specific tones.

  • PDF

An Integrated Approach of CNT Front-end Amplifier towards Spikes Monitoring for Neuro-prosthetic Diagnosis

  • Kumar, Sandeep;Kim, Byeong-Soo;Song, Hanjung
    • BioChip Journal
    • /
    • v.12 no.4
    • /
    • pp.332-339
    • /
    • 2018
  • The future neuro-prosthetic devices would be required spikes data monitoring through sub-nanoscale transistors that enables to neuroscientists and clinicals for scalable, wireless and implantable applications. This research investigates the spikes monitoring through integrated CNT front-end amplifier for neuro-prosthetic diagnosis. The proposed carbon nanotube-based architecture consists of front-end amplifier (FEA), integrate fire neuron and pseudo resistor technique that observed high electrical performance through neural activity. A pseudo resistor technique ensures large input impedance for integrated FEA by compensating the input leakage current. While carbon nanotube based FEA provides low-voltage operation with directly impacts on the power consumption and also give detector size that demonstrates fidelity of the neural signals. The observed neural activity shows amplitude of spiking in terms of action potential up to $80{\mu}V$ while local field potentials up to 40 mV by using proposed architecture. This fully integrated architecture is implemented in Analog cadence virtuoso using design kit of CNT process. The fabricated chip consumes less power consumption of $2{\mu}W$ under the supply voltage of 0.7 V. The experimental and simulated results of the integrated FEA achieves $60G{\Omega}$ of input impedance and input referred noise of $8.5nv/{\sqrt{Hz}}$ over the wide bandwidth. Moreover, measured gain of the amplifier achieves 75 dB midband from range of 1 KHz to 35 KHz. The proposed research provides refreshing neural recording data through nanotube integrated circuit and which could be beneficial for the next generation neuroscientists.

Electrochemical Characterization of Anti-Corrosion Film Coated Metal Conditioner Surfaces for Tungsten CMP Applications (텅스텐 화학적-기계적 연마 공정에서 부식방지막이 증착된 금속 컨디셔너 표면의 전기화학적 특성평가)

  • Cho, Byoung-Jun;Kwon, Tae-Young;Kim, Hyuk-Min;Venkatesh, Prasanna;Park, Moon-Seok;Park, Jin-Goo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.61-66
    • /
    • 2012
  • Chemical Mechanical Planarization (CMP) is a polishing process used in the microelectronic fabrication industries to achieve a globally planar wafer surface for the manufacturing of integrated circuits. Pad conditioning plays an important role in the CMP process to maintain a material removal rate (MRR) and its uniformity. For metal CMP process, highly acidic slurry containing strong oxidizer is being used. It would affect the conditioner surface which normally made of metal such as Nickel and its alloy. If conditioner surface is corroded, diamonds on the conditioner surface would be fallen out from the surface. Because of this phenomenon, not only life time of conditioners is decreased, but also more scratches are generated. To protect the conditioners from corrosion, thin organic film deposition on the metal surface is suggested without requiring current conditioner manufacturing process. To prepare the anti-corrosion film on metal conditioner surface, vapor SAM (self-assembled monolayer) and FC (Fluorocarbon) -CVD (SRN-504, Sorona, Korea) films were prepared on both nickel and nickel alloy surfaces. Vapor SAM method was used for SAM deposition using both Dodecanethiol (DT) and Perfluoroctyltrichloro silane (FOTS). FC films were prepared in different thickness of 10 nm, 50 nm and 100 nm on conditioner surfaces. Electrochemical analysis such as potentiodynamic polarization and impedance, and contact angle measurements were carried out to evaluate the coating characteristics. Impedance data was analyzed by an electrical equivalent circuit model. The observed contact angle is higher than 90o after thin film deposition, which confirms that the coatings deposited on the surfaces are densely packed. The results of potentiodynamic polarization and the impedance show that modified surfaces have better performance than bare metal surfaces which could be applied to increase the life time and reliability of conditioner during W CMP.

Fabrication and Characterization of Pyrolyzed Carbon for Use as an Electrode Material in Electrochemical Biosensor (전기화학 바이오센서의 전극물질로 응용을 위한 열분해 탄소의 제작 및 특성 연구)

  • Lee, Jung-A.;Hwang, Seong-Pil;Kwak, Ju-Hyoun;Park, Se-Il;Lee, Seung-Seob;Lee, Kwang-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.10
    • /
    • pp.986-992
    • /
    • 2007
  • This paper presents the fabrication and characterization of carbon films pyrolyzed with various photoresists for bioMEMS applications. To verify the usefulness of pyrolyzed carbon films as an electrode material in an electrochemical biosensor developed by the authors, interactions between avidin and biotin on the pyrolyzed carbon film were studied via electrochemical impedance spectroscopy based on electrostatic interactions between avidin and negatively-charged ferricyanide. The pyrolyzed carbon films were characterized using a surface profiler, a precision semiconductor parameter analyzer, a nanoindentor, scanning electron microscopy, and atomic force microscopy. Amine conjugated biotin was immobilized on the electrode using EDC/NHS as crosslinkers after $O_2$ plasma treatment to enhance functional groups on the carbon electrode pyrolyzed at $1000^{\circ}C$ with AZ9260. The detection of avidin binding with different concentrations in a range of 0.75 nM to $7.5\;{\mu}M$ to the pyrolyzed carbon electrode modified with biotin was carried out by measuring the electrochemical impedance change. The results show that avidin binds to the biotin on the electrode not by non-specific interaction but by specific interaction, and that EIS successfully detects this binding event. Pyrolyzed carbon films are a promising material for miniaturization, integration, and low-cost fabrication in electrochemical biosensors.

A Study on the Characteristics of Four Electrode Bioimpedance Model using Dry Electrode (건식전극을 이용한 4 전극형 생체임피던스 모델 특성 연구)

  • Cho, Young Chang;Jeong, Jong Hyeong;Yun, Jeong-oh;Kim, Min Soo
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1122-1127
    • /
    • 2019
  • In this study, the bio-impedance of the human body is able to obtain a lot of information by monitoring the pathological and physiological conditions of clinical and biological tissues. The four electrode method system for biometrics measured the potential difference between two electrodes and the other two electrodes were used as electrodes for current flow. The newly developed dry gold electrode measured impedance from 1 Hz to 50 kHz and produced reproducible results. To verify the impedance measurement of the dry electrode, the pitting was performed using an equivalent circuit model of the bioelectrode skin, and the effectiveness was demonstrated through modeling. Fixed electrode types have a constant position of the electrodes attached during the measurement, so that a stable measurement can be obtained, thereby minimizing the error.

Body Composition Variations in the Paretic and Nonparetic Regions of Patients with Strokes Caused by Cerebral Hemorrhage or Cerebral Infarction

  • Yoo, Chan-Uk;Kim, Jae-Hyung;Kim, Gun-Ho;Hwang, Young-Jun;Jeon, Gye-Rok;Baik, Seong-Wan
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.314-323
    • /
    • 2017
  • Indicators to quantitatively evaluate the body function may help to optimize the effectiveness of rehabilitation therapy for stroke patients. In this study, we analyzed the body composition in the paretic and nonparetic regions of stroke patients with hemiplegia caused by cerebral hemorrhage (7 cases) and cerebral infarction (13 cases) using multifrequency bioelectrical impedance. Specifically, we considered fat mass (FM), fat-free mass (FFM), FFMI index (FFMI), FM/FFM relation, body cell mass (BCM), basal metabolic rate (BMR), and BMR/FFM relation to evaluate the bodily function in the paretic and nonparetic regions. These values showed considerable differences according to grades determined by the stroke causes and the paralysis status. In the paretic regions, the FFM, FFMI, BCM, and BMR were low and the FM was high. In contrast, the nonparetic regions showed a high FFM and low FM. Furthermore, the paretic and nonparetic regions of all patients suitably fit a linear relation (slope: 22.17 kcal/day/kg) between BMR and FFM. Therefore, bio-electrical impedance measurements can be very useful to quantitatively assess paretic and nonparetic regions in hemiplegic stroke patients.

Sintering and Electrical Properties of Cr-doped ZnO-Bi2O3-Sb2O3 (Cr을 첨가한 ZnO-Bi2O3-Sb2O3계의 소결과 전기적 특성)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.12
    • /
    • pp.942-948
    • /
    • 2010
  • In this study we aims to examine the effects of 0.5 mol% $Cr_2O_3$ addition on the reaction, microstructure development, resultant electrical properties, and especially the bulk trap and interface state levels of ZnO-$Bi_2O_3-Sb_2O_3$ (Sb/Bi=0.5, 1.0, and 2.0) systems (ZBS). The samples were prepared by conventional ceramic process, and characterized by XRD, density, SEM, I-V, impedance and modulus spectroscopy (IS & MS) measurement. The sintering and electrical properties of Cr-doped ZBS (ZBSCr) systems were controlled by Sb/Bi ratio. Pyrochlore ($Zn_2Bi_3Sb_3O_{14}$) was decomposed more than $100^{\circ}C$ lowered on heating in ZBS (Sb/Bi=1.0) by Cr doping. The densification of ZBSCr (Sb/Bi=0.5) system was retarded to $800^{\circ}C$ by unknown Bi-rich phase produced at $700^{\circ}C$. Pyrochlore on cooling was reproduced in all systems. And $Zn_7Sb_2O_{12}$ spinel ($\alpha$-polymorph) and $\delta-Bi_2O_3$ phase were formed by Cr doping. In ZBSCr, the varistor characteristics were not improved drastically (non-linear coefficient $\alpha$ = 7~12) and independent on microstructure according to Sb/Bi ratio. Doping of $Cr_2O_3$ to ZBS seemed to form $Zn_i^{..}$(0.16 eV) and $V^{\bullet}_o$ (0.33 eV) as dominant defects. From IS & MS, especially the grain boundaries of Sb/Bi=0.5 systems were divided into two types, i.e. sensitive to oxygen and thus electrically active one (1.1 eV) and electrically inactive intergranular one (0.95 eV) with temperature.

Design and Implementation of Digital Electrical Impedance Tomography System (디지털 임피던스 영상 시스템의 설계 및 구현)

  • 오동인;백상민;이재상;우응제
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.269-275
    • /
    • 2004
  • Different biological tissues have different values of electrical resistivity. In EIT (electrical impedance tomography), we try to provide cross-sectional images of a resistivity distribution inside an electrically conducting subject such as the human body mainly for functional imaging. However, it is well known that the image reconstruction problem in EIT is ill-posed and the quality of a reconstructed image highly depends on the measurement error. This requires us to develop a high-performance EIT system. In this paper, we describe the development of a 16-channel digital EIT system including a single constant current source, 16 voltmeters, main controller, and PC. The system was designed and implemented using the FPGA-based digital technology. The current source injects 50KHz sinusoidal current with the THD (total harmonic distortion) of 0.0029% and amplitude stability of 0.022%. The single current source and switching circuit reduce the measurement error associated with imperfect matching of multiple current sources at the expense of a reduced data acquisition time. The digital voltmeter measuring the induced boundary voltage consists of a differential amplifier, ADC, and FPGA (field programmable gate array). The digital phase-sensitive demodulation technique was implemented in the voltmeter to maximize the SNR (signal-to-noise ratio). Experimental results of 16-channel digital voltmeters showed the SNR of 90dB. We used the developed EIT system to reconstruct resistivity images of a saline phantom containing banana objects. Based on the results, we suggest future improvements for a 64-channel muff-frequency EIT system for three-dimensional dynamic imaging of bio-impedance distributions inside the human body.

Analysis of Bioimpedance Change and the Characteristics of Blood Pressure according to Posture (자세에 따른 생체임피던스 변화와 혈압 특성 분석)

  • Cho, Young Chang;Kim, Min Soo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.5
    • /
    • pp.25-31
    • /
    • 2014
  • Bioelectrical Impedance Analysis(BIA) is a widely used method for estimating body composition changes which is a non-invasive, inexpensive, safety and reproductive method. We studied the bioimpedance change and the distinction of blood pressure according to body posture and conducted three kinds of experiments: the real-time bioimpedance measurement, the simulation using equivalent circuit model and the blood pressure measurement. Bioimpedance is measured during 4 minutes at the multi-frequency(1 kHz, 10 kHz, 20 kHz, 50 kHz, 70 kHz, 100 kHz). From the experiment results, the changes in body postures result in changes of resistance and reactance, with an average rapid increase of body impedance when going from standing, sitting to supine. Specially, the laying resistance on average was 16.49% higher than supine resistance at 50 kHz and the laying reactance measurement was also 26.05% higher than sitting reactance at 1 kHz. Blood pressure in standing posture was higher than those in other postures both in maximum($125.14{\pm}12.30$) and in minimum($75.57{\pm}10.31$). The results of BIA and blood pressure in this study will be contributed to the research on acute illness, extreme fat, and body shape abnormalities.

Estimation of Hand Gestures Using EMG and Bioimpedance (근전도와 임피던스를 이용한 손동작 추정)

  • Kim, Soo-Chan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.194-199
    • /
    • 2016
  • EMG has specific information which is related to movements according to the activities of muscles. Therefore, users can intuitively control a prosthesis. For this reason, biosignals are very useful and convenient in this kind of application. Bioimpednace also provides specific information about movements like EMG. In this study, we used both EMG and bioimpedance to classify the typical hand gestures such as hand open, hand close, no motion (rest), supination, and pronation. Nine able-bodied subjects and one amputee were used as experimental data set. The accuracy was $98{\pm}1.9%$ when 2 bio-impedance and 8 EMG channels were used together for normal subjects. The number of EMG channels affected the accuracy, but it was stable when more than 5 channels were used. For the amputee, the accuracy is higher when we use both of them than when using only EMG. Therefore, accurate and stable hand motion estimation is possible by adding bioimepedance which shows structural information and EMG together.