• 제목/요약/키워드: Bio-impedance

검색결과 108건 처리시간 0.027초

임피던스 센서 제작을 위한 잉크젯 기반 패턴 IDE 적층공정 최적화 연구 (A Study on Optimization of Inkjet-based IDE Pattern Process for Impedance Sensor)

  • 정현윤;고정범
    • 한국기계가공학회지
    • /
    • 제21권4호
    • /
    • pp.107-113
    • /
    • 2022
  • At present, it is possible to manufacture electrodes down to several micrometers (~ ㎛) using inkjet printing technology owing to the development of precision ejection heads. Inkjet printing technology is also used in the manufacturing of bio-sensors, electronic sensors, and flexible displays. To reduce the difference between the electrode design/simulation performance and actual printing pattern performance, it is necessary to analyze and optimize the processable area of the ink material, which is a fluid. In this study, process optimization was conducted to manufacture an IDE pattern and fabricate an impedance sensor. A total of 25 IDE patterns were produced, with five for each lamination process. Electrode line width and height changes were measured by stacking the designed IDE pattern with a nanoparticle-based conductive ink multilayer. Furthermore, the optimal process area for securing a performance close to the design result was analyzed through impedance and capacitance. It was observed that the increase in the height of stack layer 4 was the lowest at 4.106%, and the increase in capacitance was measured to be the highest at 44.08%. The proposed stacking process pattern, which is optimized in terms of uniformity, reproducibility, and performance, can be efficiently applied to bio-applications such as biomaterial sensing with an impedance sensor.

전기화학적 임피던스 Fitting 개선을 위한 전극/전해질 계면의 전기회로 모델 연구 (A Study on the Electrical Circuit Model of the Electrode/Electrolyte Interface for Improving Electrochemical Impedance Fitting)

  • 장종현;박정호
    • 전기학회논문지
    • /
    • 제56권6호
    • /
    • pp.1087-1091
    • /
    • 2007
  • Exact impedance modeling of the electrode/electrolyte interface is important in bio-signal sensing electrode development. Therefore, the investigation of the equivalent circuit models for the interface has been pursued for a long time by several researchers. Previous circuit models fit the experimental results in limited conditions such as frequency range, type of electrode, or electrolyte. This paper describes a new electrical circuit model and its capability of fitting the experimental results. The proposed model consists of three resistors and two constant phase elements. Electrochemical impedance spectroscopy was used to characterize the interface for Au, Pt, and stainless steel electrode in 0.9% NaCl solution. Both the proposed model and the previous model were applied to fit the measured impedance results for comparison. The proposed model fits the experimental data more accurately than other models especially at the low frequency range, and it enables us to predict the impedance at very low frequency range, including DC, using the proposed model.

Impedance Spectroscopy를 이용한 토양 수분함량 센서의 주요 설계인자 분석 (Analysis of Main Design Factors for Developing a Soil Water Content Sensor Using Impedance Spectroscopy)

  • 이동훈;조용진;장영창;이규승
    • Journal of Biosystems Engineering
    • /
    • 제33권4호
    • /
    • pp.269-275
    • /
    • 2008
  • This study was conducted to design an impedance sensor that can measure soil water content of soils. Partial least square regression (PLSR) was applied to soil impedance data preprocessed with a smoothing method. An optimal sub-spectrum size and wavelength range were determined by comparing the coefficient of determination ($R^2$) and root mean square error (RMSE) of the PLSR models obtained using soil impedance data. various PLS analysis. Based on the PLSR analysis, it would be concluded that the optimal spectrum measurement range was $32.0{\sim}50.0\;MHz$ with the optimal sub-spectrum size of about 18.5 MHz.

인간 피부에 삽입형 전극설계를 위한 생체임피던스 특성 (Characteristics of Bio-impedance for Implantable Electrode Design in Human Skin)

  • 김민수;조영창
    • 한국산업정보학회논문지
    • /
    • 제19권4호
    • /
    • pp.9-16
    • /
    • 2014
  • 전극 접촉저항은 생리학적 측정에 중대한 인자이며, 전기적 임피던스 측정을 수행할 때 정확성에 제한적 요인이 될 수 있다. 생체전기임피던스 값들은 인간피부에 삽입되는 전극을 이용하여 하부 조직의 도전율과 유전율에 의해서 계산할 수 있다. 본 연구에서는 피지, 각질층, 표피층, 진피, 피하조직 및 근육층의 인체 피부의 생리적 변화를 검출하는데 주안점을 두고 있으며, 피하조직에 삽입되는 전극의 최적설계를 위해 유한요소법을 사용하였다. 이를 위해 전극의 길이(50 mm, 70 mm), 재질(금), 모양(직사각형, 둥근사각, 육각기둥) 및 깊이(22.325 mm)에 따른 전극설계의 차이를 유한요소법을 통해 피하조직 층으로부터 얻어지는 정보를 바탕으로 기하학적으로 평가하였다. 생체임피던스 실험에서 전극모양과 인가전압에 따라서 피하조직에서 생체임피던스 차이가 가장 크게 나타남을 확인하였다. 본 연구의 모의실험은 피부의 전기적 임피던스 측정과 해석에 관한 물리적 현상뿐만 아니라 다른 형태의 전극 설계에 관한 특성들을 설명할 수 있을 것이다.

임피던스법을 이용한 혈압 및 혈류 변화량 검출 시스템 구현 (Implementation of the Blood Pressure and Blood Flow Variation Rate Detection System using Impedance Method)

  • 노정훈;배진우;예수영;신범주;전계록
    • 한국산학기술학회논문지
    • /
    • 제10권8호
    • /
    • pp.1926-1938
    • /
    • 2009
  • 본 연구에서는 혈압 측정 시 생체 임피던스가 변화하는 현상을 이용하여 혈류량 변화를 검출하는 시스템을 구현하였다. 혈압의 측정은 오실로메트릭법을 적용하였으며, MAA 알고리즘을 이용하여 평균 동맥압을 산출한 후 평균 동맥압에 대한 여러 가지 특성비율을 설정하여 수축기 및 이완기 혈압을 추정하였다. 인체 임피던스 측정은 교류 정전류원과 락인-증폭기를 이용하였으며, 측정 부위에 인가되는 커프 압력에 의해 생체 임피던스 변화량을 이용하여 혈류량 변화를 측정하였다.

생체 신호 측정용 저 잡음 저 전력 용량성 계측 증폭기 (A Low Noise Low Power Capacitive Instrument Amplifier for Bio-Potential Detection)

  • 박창범;정준모;임신일
    • 센서학회지
    • /
    • 제26권5호
    • /
    • pp.342-347
    • /
    • 2017
  • We present a precision instrument amplifier (IA) designed for bio-potential acquisition. The proposed IA employs a capacitively coupled instrument amplifier (CCIA) structure to achieve a rail-to-rail input common-mode range and low gain error. A positive feedback loop is applied to boost the input impedance. Also, DC servo loop (DSL) with pseudo resistors is adopted to suppress electrode offset for bio-potential sensing. The proposed amplifier was designed in a $0.18{\mu}m$ CMOS technology with 1.8V supply voltage. Simulation results show the integrated noise of $1.276{\mu}Vrms$ in a frequency range from 0.01 Hz to 1 KHz, 65dB SNR, 118dB CMRR, and $58M{\Omega}$ input impedance respectively. The total current of IA is $38{\mu}A$. It occupies $740{\mu}m$ by $1300{\mu}m$ including the passive on-chip low pass filter.

한국인 앉은 자세에 대한 수직 진동 -응답특성의 실험적 연구 : (II) Mechanical Impedances (Experimental Investigation of the Response Characteristics of Korean -seated Subjects under Vertical Vibration: (II) Mechanical Impedances)

  • 정완섭;김영태;권휴상;홍동표
    • 한국소음진동공학회논문집
    • /
    • 제13권9호
    • /
    • pp.713-719
    • /
    • 2003
  • This paper introduces attempts to obtain the ‘representative’ characteristics of the mechanical impedance of seated Korean subjects under vertical vibration. Individual responses of driving-point mechanical impedance obtained from forty one Korean subjects are illustrated. Four kinds of vibration levels and three different sitting postures are selected to collect the responses of each subject. Those individual responses are used to estimate the ‘mean’ mechanical impedance, which may be expected to be a representative model to Korean subjects. Several interesting features of the estimated mechanical impedance are suggested and compared to those of ISO/DIS 5982.

말초 신경 신호 기록의 효율성 개선을 위한 전도성 폴리머가 적용된 생체삽입형 커프형 신경전극 (Implantable Nerve Cuff Electrode with Conductive Polymer for Improving Recording Signal Quality at Peripheral Nerve)

  • 박성진;이이재;윤광석;강지윤;이수현
    • 센서학회지
    • /
    • 제24권1호
    • /
    • pp.22-28
    • /
    • 2015
  • This study demonstrates a polyimide nerve cuff electrode with a conductive polymer for improving recording signal quality at peripheral nerve. The nerve cuff electrodes with platinum (Pt), iridium oxide (IrOx), and poly(3,4-ethylenedioxythiophene): p-toluene sulfonate (PEDOT:pTS) were fabricated and investigated their electrical characteristics for improving recorded nerve signal quality. The fabricated nerve cuff electrodes with Pt, IrOx, and PEDOT:pTS were characterized their impedance and CDC by using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry. The impedance of PEDOT:pTS measured at 1 kHz was $257{\Omega}$, which was extremely lower than the value of the nerve cuff electrodes with IrOx ($15897{\Omega}$) and Pt ($952{\Omega}$), respectively. Furthermore, the charge delivery capacity (CDC) of the nerve cuff electrode with PEDOT:pTS was dramatically increased to 62 times than the nerve cuff electrode with IrOx. In ex-vivo test using extracted sciatic nerve of spaque-dawley rat (SD rat), the PEDOT:pTS group exhibited higher signal-to-interference ratio than IrOx group. These results indicated that the nerve cuff electrode with PEDOT:pTS is promising for effective implantable nerve signal recording.

생체임피던스에 의한 상지운동 감지를 위한 최적 전극 위치의 평가 및 검증 (Evaluation and Verification of Optimal Electrode Configurations for Detection of Arm Movement Using Bio-Impedance)

  • 안선희;김수찬;남기창;김덕원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.399-402
    • /
    • 2002
  • In this study, we constructed a four-channel impedance measurement system including a two-channel goniometer to analyze human arm movement. Impedances and joint angles were simultaneously measured for wrist and elbow movements. As the impedance changes resulting from wrist and elbow movements depended heavily on electrode placement, we determined the optimal electrode configurations for those movements by searching for high correlation coefficients, large impedance changes, and minimum interferences in ten subjects (age: 29+6). Our optimal electrode configurations showed very strong relationships between the wrist joint angle and forearm impedance (correlation coefficient = 0.95+0.04), and between the elbow joint angle and upper arm impedance (correlation coefficient = -0.98+0.02). Although the measured impedances changes of the wrist (1.1+1.5 ohm) and elbow (-5.0+2.9 ohm) varied among individuals, the reproducibilities of wrist and elbow impedance changes of five subjects were 5.8+1.8 % and 4.6+1.4 % for the optimal electrode pairs, respectively. We propose that this optimal electrode configuration would be useful for future studies involving the measurement of accurate arm movements by impedance method.

  • PDF