As an experiment investigation, the effects of ethanol blended gasoline fuel with different injection method on nano-sized particle emission characteristics were examined in a 0.5L spark-ignited single-cylinder engine with a compression ratio of 10. Because this engine nano-particles are currently attracting interest due to its adverse health effects and their impact on the environments. So a pure gasoline and an ethanol blended gasoline fuels, namely E85 fuel, used for this study. And, as a particle measuring instrument, a fast-response particle spectrometer (DMS 500) with heated sample line was used for continuous measurement of the particle size and number distribution in the size range of 5 to 1000nm (aerodynamic diameter). As this research results, we found that the effect of ethanol blending gasoline caused drastic decrease of nano-particle emissions when port fuel injection was used for making better air-fuel mixture than direct fuel injection. Also injection timing, specially direct fuel injection, could be a dominant factor in controlling the exhaust particle emissions.
This article is about using the fuel mixed with 10% and 20% bio-ethanol to gasoline for the engine as a way to reduce carbon emission before commercializing future automobiles like fuel cell cars. The fuel mixed with 10% and 20% bio-ethanol showed output equivalent to that of the previous gasoline fuel. CO and $CO_2$ emission was somewhat reduced, but the difference was not significant. And the consumption of the fuel increased slightly. However, bio-ethanol is produced from bio mass growing with the absorption of carbon dioxide, so the total amount of carbon dioxide did not increase according to the result. In NOx, as the use of ethanol increases, the effect of reduction gets greater, and the emission of oxygen showed almost no change compared with gasoline.
A comparative evaluation of engine cleanliness was performed on the transport gasoline blended with bio- alcohols, and this study was considered to achieve the aim of greenhouse gas reduction in Korea. In particular, the fuel blended with bio-ethanol and bio-butanol showed the best engine cleaning performance both on combustion chamber deposits and intake valve deposits. The deposit control gasoline additive was effective to remove intake valve deposits. In contrast, the amount of combustion chamber deposits were tend to increase even though fuels blended with bio-alcohols were used. In overall, fuels blended with bio-alcohols, compared to fossil fuels, still showed outstanding performance in terms of engine cleanliness.
The purpose of this paper is to experimentally investigate the engine pollutant emissions and combustion characteristics of diesel engine fueled with ethanol-diesel blended fuel (bio-diesohol). The experiments were performed on a single-cylinder DI diesel engine. Two blend fuels were consisted of $15\%$ ethanol, $83.5\%$ diesel and $1.5\%$ solublizer (by volume) were evaluated: one without cetane improver (E15-D) and one with a cetane improver (E15-D+CN improver). The engine performance parameters and emissions including fuel consumption, exhaust temperature, lubricating oil temperature, Bosch smoke number, CO, NOx, and THC were measured, and compared to the baseline diesel fuel. In order to gain insight into the combustion characteristics of bio-diesohol blends, the engine combustion processes for blended fuels and diesel fuel were observed using an Engine Video System (AVL 513). The results showed that the brake specific fuel consumption (BSFC) increased at overall engine operating conditions, but it is worth noting that the brake thermal efficiency (BTE) increased by up to $1-2.3\%$ with two blends when compared to diesel fuel. It is found that the engine fueled with ethanol-diesel blend fuels has higher emissions of THC, lower emissions of CO, NOx, and smoke. And the results also indicated that the cetane improver has positive effects on CO and NOx emissions, but negative effect on THC emission. Based on engine combustion visualization, it is found that ignition delay increased, combustion duration and the luminosity of flame decreased for the diesohol blends. The combustion is improved when the CN improver was added to the blend fuel.
As environment problem became a worldwide issue, countries are tightening regulations regarding greenhouse gas reduction and improvement of air pollution problems. With these circumstances, one of the renewable energies produced from biomass is getting attention. Bio-ethanol, which is applicable to SI engine, showed a positive effect on the PFI (Port Fuel Injection) type. However, Ethanol has a problem in homogeneous mixture formation because it has high latent heat of vaporization characteristics and in the GDI (Gasoline Direct Injection) type, mixture formation is required quickly after fuel injection. Particularly, South Korea is one of the countries with great temperature variation among seasons. With this reason, South Korea supply fuel additive for smooth engine operation during winter. Therefore, experimental study and investigation about application possibility of blending fuel is necessary. This paper demonstrates the spray characteristics by using the CVC direct injection and setting the bio-ethanol blending fuel temperature close to the temperature during each seasons: -7, 25, $35^{\circ}C$. The diameter and the width of the CVC are 86mm and 39mm. High-pressure fuel supply system was used for target injection pressure. High-speed camera was used for spray visualization. The experiment was conducted by setting the injection pressure and ambient pressure according to each temperature of bio-ethanol blending fuel as a parameter. The result of spray visualization experiment demonstrates that as the temperature of the fuel is lower, the atomization quality is lower, and this increase spray penetration and make mixture formation difficult. Injection strategy according to fuel temperature and bio-ethanol blending rate is needed for improving characteristics.
바이오매스 원료로부터 급속열분해 반응을 통하여 생산되는 바이오 오일은 화석연료를 대체할 수 있는 잠재력을 가지고 있다. 하지만, 바이오 오일은 에너지 밀도와 세탄가가 낮고 점성도가 높은 연료의 한계성이 있으므로 디젤엔진에 적용하기에는 제한적이다. 따라서, 안정적인 연소를 얻기 위해서는 바이오 오일을 세탄가가 높은 연료와 유화하거나 혼합하여 사용하여야 한다. 하지만 바이오 오일과 화석연료는 극성이 달라서 서로 혼합되지 않으며 가장 손쉽게 혼합되는 연료는 알코올계 연료이다. 본 연구에서는 바이오 오일의 연료특성을 향상시키기 위하여 에탄올 연료와 혼합하였으며, 연료의 자발화 특성을 향상시키기 위하여 세탄가 향상제인 PEG 400, 2-EHN 도 첨가하였다. 또한 최대 15%의 바이오 오일이 혼합된 혼합연료를 디젤엔진에서 안정적으로 연소시키기 위하여 고압축비 피스톤도 적용하였다.
As a demand for an automobile increases, air pollution and a problem of the energy resources come to the fore in the world. Consequently, governments of every country established ordinances for green-house gas reduction and improvement of air pollution problem. Especially, as international oil price increases, engine using clean energy are being developed competitively with alternative transportation energy sources development policy as the center. Bio ethanol, one of the renewable energy produced from biomass, gained spotlight for transportation energy sources. Studies are in progress to improve fuel supply methods and combustion methods which are key features, one of the engine technologies. DI(Direct Injection), which can reduce fuel consumption rate by injecting fuel directly into the cylinder, is being studied for Green-house gas reduction and fuel economy enhancement at SI(Spark Ignition). GDI(Galoine Direct Injection) has an advantage to meet the regulations for fuel efficiency and $CO_2$ emissions. However it produces increased number of ultrafine particles, that yet received attention in the existing port-injection system, and NOX. As fuel is injected into the cylinder with high-pressure, a proper injection strategy is required by characteristics of a fuel. Especially, when alcohol type fuel is considered. In this study, we tried to get a base data bio-ethanol mixture in GDI, and combustion for optimization. We set fuel mixture rate and fuel injection pressure as parameters and took a picture with a high speed camera after gasoline-ethanol mixture fuel was injected into a constant volume combustion chamber. We figured out spraying characteristic according to parameters. Also, we determine combustion characteristics by measuring emissions and analyzing combustion.
세계적인 화석연료사용의 급증으로 인해 지구온난화와 자원고갈의 문제가 크게 대두되어지고 있다. 이를 해결하기 위해 많은 국가와 연구기관이 재생 가능한 에너지로서 바이오연료의 개발과 사용에 관심을 기울이고 있다. 바이오에탄올은 자동차용 휘발유와 혼합하여 사용할 수 있는 연료로서 많은 국가에서 상용화하고 있다. 우리 연구그룹은 혼합비율에 따른 자동차용 휘발유의 품질특성시험(상분리 모사실험, 금속류 부식실험, 고무류 침지실험 등)을 한 결과 국내 최적의 혼합량(E3, E5)을 도출하였다. 이로부터 현재 전국 4개 시범주유소를 운영하면서 바이오에탄올 실증평가를 수행 중에 있다. 본 논문에서는 바이오에탄올 혼합연료유 도입을 위한 실증평가 연구를 통해 국내 바이오에탄올의 도입 활성화 가능성과 최적의 유통인프라 구축방안에 대해 논의하고자 한다.
국제 원유가의 지속적인 상승에 따라 화석연료 고갈을 대비한 대체에너지 및 온실가스배출 감소를 위하여 바이오연료의 시용 및 상용보급은 전세계적인 추세이다. 우리나라의 경우 바이오디젤은 2002년부터 시범보급사업(Demonstration & disseminatio을 거쳐 2000년 7월부터 전국주유소를 통하여 경유 중에 바이오디젤 0.5%를 혼합한 BD0.5를 수송용 연료로 도입하여 아시아 최초로 상용보급화를 시행하고 있다. 또한 휘발유 중 바이오에탄올 혼합 연료유 도입을 위한 실증평가연구를 2006년 8월부터 2008년 7월까지 수행중이다. 자동차용 휘발유의 옥탄가 향상을 위해 함산소 기재로 사용되는 MTBE(Methyl Tertiary Butyl Ether)를 바이오에탄올로 대체한 바이오에탄올 혼합연료유는 수분 혼입에 의한 상 분리(Phase separation)와 금속에 대한 부식성 문제를 야기 시킬 수 있다. 바이오에탄올을 서브옥란가솔린(Sub-octane gasoline)에 혼합하여 상 분리 모사실험, 금속류 부식시험, 고무류 침지실험 등 다양한 품질특성평가를 수행하였으며, 이런 결과들을 바탕으로 국내실정에 알맞은 최적의 혼합량(E3, E5)을 도출하였다. 또한 전국에 4개 시범주유소를 운영하여 바이오에탄올 혼합 연료유의 유통 및 보급을 통해 최적의 유통인프라(Distribution infrastructure) 보완 및 구축 방안을 도출 하고자 한다.
국제 원유가의 지속적인 상승에 따라 화석연료 고갈을 대비한 대체에너지 빛 온실가스배출감소를 위하여 바이오연료의 사용 및 상용보급은 전세계적인 추세이다. 우리나라의 경우 바이오디젤은 2002년부터 시범보급사업(Demonstration & dissemination)을 거쳐 2006년 7월부터 전국주유소를 통하여 경유 중에 바이오디젤 0.5%를 혼합한 BDO.5를 수송용 연료로 도입하여 아시아 최초로 상용보급화를 시행하고 있다. 또한 휘발유 중 바이오에탄올 혼합 연료유 도입을 위한 실증평가연구를 2006년 8월부터 2008년 7월까지 수행중이다. 자동차용 휘발유의 옥탄가 향상을 위해 함산소 기재로 사용되는 MTBE(Methyl Tertiary Butyl Ether)를 바이오에탄올로 대체한 바이오에탄올 혼합연료유는 수분 혼입에 의한 상 분리(Phase separation)와 금속에 대한 부식성 문제를 야기 시킬 수 있다. 바이오에탄올을 서브옥탄가솔린(Sub-octane gasoline)에 혼합하여 상 분리 모사실험, 금속류 부식시험, 고무류 침지실험 등 다양한 품질특성평가를 수행하였으며, 이런 결과들을 바탕으로 국내실정에 알맞은 최적의 혼합량(E3, E5)을 도출하였다. 또한 전국에 4개 시범주유소를 운영하여 바이오에탄올 혼합 연료유의 유통 및 보급을 통해 최적의 유통인프라(Distribution infrastructure) 보완 및 구축 방안을 도출 하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.