• Title/Summary/Keyword: Bio-Oss

Search Result 70, Processing Time 0.035 seconds

THE EFFECT OF PRP AND FIBRIN SEALANT WITH THE DEPROTENIZED BOVINE BONE IN THE RABBIT CRANIUM (가토의 두개골 골결손부에 탈단백 우골 이식시 혈소판 농축 혈장과 피브린 실란트의 효과)

  • Lee, Yong-In;Shin, Seung-Yun;Lee, Dong-Hwan;Hong, Jong-Rak
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.3
    • /
    • pp.221-226
    • /
    • 2007
  • Purpose The purpose of this study is to evaluation of effect on bone formation of PRP and fibrin sealant with deproteinized bovine bone(Bio-Oss) grafts on rabbit cranial defect. Material and Methods Twelve rabbits were used as experimental animal Two equal 9mm diameter cranial bone defects were created in each rabbit and immediately grafted with Bio-Oss only, Bio-Oss and PRP, and Bio-Oss and Fibrin sealant. Rabbits were sacrificed at 4 and 8 week. The defects were evaluated by histomorphometric analysis. Results Kruskal-Wallis tests were performed comparing new bone formation via histomorphometric analysis. No statistically significant difference of new bone formation was found between Bio-Oss only, Bio-Oss and PRP, and Bio-Oss and fibrin sealant at 4 and 8 weeks (P>0.05). Conclusion This study fails to find a stimulatory effect of PRP and Fibrin sealant on New bone formation of Bio-Oss grafts by histomorphometric analyses.

The effect of immobilization of heparin and bone morphogenic protein-2 to bovine bone substitute on osteoblast-like cell's function

  • Huh, Jung-Bo;Kim, Sung-Eun;Song, Se-Kyung;Yun, Mi-Jung;Shim, Ji-Suk;Lee, Jeong-Yo;Shin, Sang-Wan
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.3
    • /
    • pp.145-151
    • /
    • 2011
  • PURPOSE. This study was performed to investigate the ability of recombinant human-bone morphogenic protein-2 immobilized on a heparin-grafted bone substrate to enhance the osteoblastic functions. MATERIALS AND METHODS. The Bio-$Oss^{(R)}$, not coated with any material, was used as a control group. In rhBMP-2-Bio-$Oss^{(R)}$ group, rhBMP-2 was coated with Bio-$Oss^{(R)}$ using only deep and dry methods (50 ng/mL, 24 h). In heparinized rhBMP-2-Bio-$Oss^{(R)}$ group, dopamine was anchored to the surface of Bio-$Oss^{(R)}$, and coated with heparin. rhBMP-2 was immobilized onto the heparinized- Bio-$Oss^{(R)}$ surface. The release kinetics of the rhBMP-2-Bio-$Oss^{(R)}$ and heparinized rhBMP-2-Bio-$Oss^{(R)}$ were analyzed using an enzyme-linked immunosorbent assay. The biological activities of the MG63 cells on the three groups were investigated via cytotoxicity assay, cell proliferation assay, alkaline phosphatase (ALP) measurement, and calcium deposition determination. Statistical comparisons were carried out by one-way ANOVA test. Differences were considered statistically significant at $^*$P<.05 and $^{**}$P<.001. RESULTS. The heparinized rhBMP-2-Bio-$Oss^{(R)}$ showed more sustained release compared to the rhBMP-2-Bio-$Oss^{(R)}$ over an extended time. In the measurement of the ALP activity, the heparinized group showed a significantly higher ALP activity when compared with the non-heparinized groups (P<.05). The MG63 cells cultivated in the group with rhBMP-2 showed increased calcium deposition, and the MG63 cells from the heparinized group increased more than those that were cultivated in the non-heparinized groups. CONCLUSION. Heparin increased the rhBMP-2 release amount and made sustained release possible, and heparinized Bio-$Oss^{(R)}$ with rhBMP-2 successfully improved the osteoblastic functions.

Histological Comparative Study of Rabbit Maxillary Sinus Augmentation with Bio-Oss and β-TCP (Bio-Oss와 β-TCP를 이용한 토끼 상악동 거상술 후의 조직학적 비교 연구)

  • Moon, Yong-Suk
    • Journal of Life Science
    • /
    • v.28 no.10
    • /
    • pp.1220-1232
    • /
    • 2018
  • The purpose of this animal study was to evaluate, by histological analysis, bone regeneration in rabbit maxillary sinuses with an anorganic bovine graft (Bio-Oss) and a ${\beta}-tricalcium$ phosphate (${\beta}-TCP$) grafting. Bilateral sinus augmentation procedures were performed in 12 adult male rabbits. Rectangular replaceable bony windows were made with a piezoelectric thin saw insert. In the Bio-Oss group, Bio-Oss was grafted and in the ${\beta}-TCP$ group, ${\beta}-TCP$ was grafted and covered by replaceable bony windows. The animals were sacrificed at 2, 4, and 8 weeks after the surgical procedure. The augmented sinuses were evaluated by histomorphometric analysis using hematoxylin-eosin, Masson trichrome, and tartrate-resistant acid phosphatase stains and also by immunohistochemical analysis of proliferating cell nuclear antigen (PCNA), type I collagen, and osteocalcin content. Histologically, new bone formation was found on the surface of Bio-Oss and ${\beta}-TCP$ particles from 2 weeks and continued to 8 weeks. Significant higher new bone formation was revealed in the ${\beta}-TCP$ group than in the Bio-Oss group at 8 weeks. The amount of graft materials was significantly decreased in the ${\beta}-TCP$ group and the number of osteoclasts was significantly increased in the ${\beta}-TCP$ group from 4 to 8 weeks. Immunoreactivity to PCNA was reduced at 8 weeks. The expression of type I collagen was significantly increased in the ${\beta}-TCP$ group at 2 weeks, but was significantly increased in the Bio-Oss group at 8 weeks. Immunoreactivity to osteocalcin was increased from 2 to 8 weeks. These histological results can help in the selection of graft materials for implants. Both Bio-Oss and ${\beta}-TCP$ are proven graft materials, however, these results indicate that ${\beta}-TCP$ showed better bone regeneration results in rabbit maxillary sinus augmentation.

The effects of platelet-rich plasma(PRP) in combination with anorganic bovine bone($Bio-Oss^{(R)}$) on the early wound healing of rabbit cranial defects (혈소판 농축 혈장과 혼합된 이종골 이식재($Bio-Oss^{(R)}$)가 가토 두개골 결손부 초기 치유에 미치는 영향)

  • Lim, Dong-Woong;Jang, Hyun-Seon;Park, Ju-Chol;Kim, Heoung-Jung;Lee, Jong-Woo;Kim, Chong-Kwan;Kim, Byung-Ock
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.1
    • /
    • pp.217-234
    • /
    • 2005
  • 혈소판 농축 혈장은 구강과 안면부 재건수술에 새로이 사용되는 유용한 첨가물이다. 혈소판은 상처 치유과정에서 매우 중요하며, 혈소판은 상처부위에 빠르게 도달하여 응고를 형성한다. 그리고 다양한 성장인자를 분비한다. 이러한 성장인자는 골의 형성과 혈관의 증가, 골 이식재의 치유에 관여하는 것으로 생각된다. 본 연구의 목적은 실험 동물을 통하여 혈소판 농축 혈장에 함유된 혈소판의 정량화를 통한 성장인자 함유량을 추정하고, 방사선학적, 조직학적 평가를 통해 혈소판 농축 혈장이 초기의 골형성에 미치는 영향에 대한 평가를 하는데 있다. 15마리의 가토 두개골에 6mm trephine bur(외경 8mm)를 이용하여 경뇌막의 손상을 주지 않도록 하면서 4개의 결손부를 형성하였다. 각각의 두개골 결손부는 $Bio-Oss^{(R)}$만 이식한 군, PRP만 이식한 군, PRP와 $Bio-Oss^{(R)}$를 혼합하여 이식한군, 그리고 아무것도 이식하지 않은 군을 대조군으로 설정하였다. 각각의 재료를 이식한 후 비흡수성 차폐막($Tefgen^{(R)}$)을 위치시키고 흡수성 봉합사로 일차봉합을 시행하였다. 각 군 당 술 후 1, 2, 4주의 치유기간을 설정하였다. 동물을 희생시키고 두개골을 절제하였다. 먼저 방사선학적인 골 밀도 측정을 시행하고, 조직학적 평가를 위해 통법에 따라 조직 표본을 제작한 후 광학현미경으로 관찰하였다. 또한 가토 귀 변연정맥에서 채취한 10 ml의 혈액을 원심분리하여 혈소판 함유량을 평가하여 다음과 같은 결과를 얻었다. 1. 혈소판 농축 혈장은 일반 혈액에 비해 약 4.02배 많은 수의 혈소판이 함유되어 있었다. 2. 방사선적인 평가에서 1, 2, 4주 사이에 대조군과 비교하여 $Bio-Oss^{(R)}$에 PRP를 이식한 군에서 골의 밀도는 큰 차이를 보이고 있다(p<0.01). 하지만, 동일한 시기에 PRP만 이식한 군과 대조군의 차이는 발견할 수 없었으며 (p>0.05), $Bio-Oss^{(R)}$만 이식한 군과 $Bio-Oss^{(R)}$에 PRP를 이식한 군의 차이 또한 발견할 수 없었다(p>0.05). 3. 조직학적 평가에서 모든 이식재는 시간이 경과할수록 골 형성이 증가함을 알 수 있었다. 대조군에 비해 PRP만 이식한 군에서 더 두꺼운 섬유성 결합을 보이고 있다. 대조군과 PRP만 이식한 군과 비교해 $Bio-Oss^{(R)}$$Bio-Oss^{(R)}$에 PRP를 혼합 이식한 군에서 골의 형성이 더 진행됨을 알 수 있었다. $Bio-Oss^{(R)}$에 PRP를 혼합 이식한 군이 $Bio-Oss^{(R)}$만 이식한 군에서보다 더 많은 신생골 형성을 관찰할 수 있다. 이상의 결과에서 가토의 두개골 결손부에 $Bio-Oss^{(R)}$에 PRP를 혼합 이식하였을 경우 결손부의 초기 골 형성을 촉진 할 수 있음을 시사하였다.

CANINE ERUPTION THROUGH BIO-$OSS^{(R)}$ GRAFT IN PATIENTS WITH CLEFT LIP & PALATE (구순구개열 환자에서의 이종골 이식재를 통한 견치의 맹출)

  • Kim, Ji-Hun;Choi, Byung-Ho;Chang, Che-Rry
    • The Journal of Korea Assosiation for Disability and Oral Health
    • /
    • v.6 no.2
    • /
    • pp.105-111
    • /
    • 2010
  • Objective : To report eruption of maxillary canine through Bio-$Oss^{(R)}$ graft in patients with secondary bone-grafted alveolar clefts. Methods : Secondary alveolar bone grafts placed in the cleft alveolar defect have been shown to support dental eruption through the graft and may further affect the prevalence of impacted teeth. As the case may be, it could be difficult to do secondary alveolar bone graft with autologous bone. In particular, few reports have been shown the secondary bone graft with heterogenous bone(Bio-$Oss^{(R)}$). In this report, the eruption of canine into bone-grafted alveolar clefts was recorded as panoramic, occlusal radiographs, in 3 patients grafted with Bio-$Oss^{(R)}$ Results : Like autologous bone graft, the canine was erupted and developed into the cleft alveolar defect through Bio-$Oss^{(R)}$ graft. Conclusion : In some cases that autologous bone graft is not available, we can consider heterogenous bone graft into the cleft alveolar defect for dental development and eruption of impacted teeth.

  • PDF

Effect of Bio-Oss grafts on tooth eruption: an experimental study in a canine model (Bio-Oss 골이식이 치아맹출에 미치는 영향에 관한 동물실험 연구)

  • Kim, Ji-Hun;Chang, Chae-Ri;Choi, Byung-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.6
    • /
    • pp.528-532
    • /
    • 2010
  • Introduction: There are few reports on tooth eruption through Bio-Oss grafts. To our knowledge, there are no reports on whether teeth can erupt normally through the grafts. The aim of this study was to examine the effect of Bio-Oss grafts on tooth eruption in a canine model. Materials and Methods: In five 10-week-old dogs, the deciduous third mandibular molars in one jaw quadrant of each animal were extracted and the fresh extraction sockets were then filled with Bio-Oss particles (experimental side). No such treatments were performed on the contralateral side (control side). A clinical and radiological evaluation was carried out every other week to evaluate the eruption level of the permanent third mandibular premolars and compare the eruption levels between the two sides. Results: At week 4 after the experiment, the permanent third premolars began to erupt on both sides. At week 12, the crown of the permanent third premolar emerged from the gingiva on both sides. At week 20, the permanent third premolars on both sides erupted enough to occlude the opposing teeth. No significant differences were found between the control and experimental sides in terms of the eruption speed of the permanent third molars. Conclusion: These findings demonstrate that the grafting of Bio-Oss particles into the alveolar bone defects does not affect tooth eruption.

Effect of bovine bone (Bio-$Oss^{(R)}$) and platelet rich plasma, platelet poor plasma on sinus bone graft in rabbit (가토 상악동 거상술 후 Bovine Bone (Bio-$Oss^{(R)}$)과 함께 이식된 혈소판풍부혈장과 혈소판결핍혈장의 골치유능 비교)

  • Lee, Tai-Hyung;Jeong, You-Min;Choi, Yong-Kun;Lee, Eui-Seok;Jang, Hyon-Seok;Rim, Jae-Suk
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.1
    • /
    • pp.39-42
    • /
    • 2010
  • Maxillary sinus lift and bone graft are used to reconstruct atrophic maxilla molar area for endosseous dental implants. Many different grafting materials and techniques can be used for maxillary sinus bone graft. Bio-$Oss^{(R)}$ has been proposed as bone substitute and successfully utilized as osteoconductive filler. Platelet rich plasma (PRP) is an autologous material with many growth factors, such as PDGF, TGF-$\beta$, IGF, VEGF, facilitating bone healing process. And Platelet poor plasma (PPP) is the by-product in procedure of producing PRP. Six rabbits were used as experimental animal. Both maxillary sinus were grafted with Bio-$Oss^{(R)}$ and PRP, and Bio-$Oss^{(R)}$ and PPP. Rabbits were sacrificed at 4, 8 and 12 weeks. The grafting sites were evaluated by histomorphometric analysis. As a result, using PRP showed excellent bone formation in the early stage, but no further significant effect after that. In late stage, the ability of bone formation of using PRP was even worse than using PPP. The further studies need to be considered in this case.

Maxillary sinus floor augmentation with anorganic bovine bone : Histologic evaluation in humans (Anorganic bovine bone을 이용한 상악동저 거상술의 조직학적 평가)

  • Son, Woo-Kyung;Shin, Seung-Yun;Yang, Seung-Min;Kye, Seung-Beom
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.1
    • /
    • pp.95-102
    • /
    • 2009
  • Purpose: The aim of this report is to investigate the efficacy of anorganic bovine bone xenograft(Bio-$Oss^{(R)}$) at maxillary sinus floor augmentation. Materials and methods: Two male patients who missed maxillary posterior teeth were included. They were performed maxillary sinus floor augmentation using anorganic bovine bone xenograft(Bio-$Oss^{(R)}$). After 10 or 13 months, the regenerated tissues were harvested using trephine drills with 2 or 4mm diameter and non-decalcified specimens were made. The specimens were examined histologically and histomorphometrically to investigate graft resorption and new bone formation. Results: Newly formed bone was in contact with Bio-$Oss^{(R)}$ particles directly without any gap between the bone and the particles. The proportions of newly formed bone were $23.4{\sim}25.3%$ in patient 1(Pt.1) and 28.8% in patient 2(Pt.2). And the proportions of remained Bio-$Oss^{(R)}$ were $29.7{\sim}30.2%$ in Pt.1 and 29.2% in Pt.2. The fixtures installed at augmented area showed good stability and the augmented bone height was maintained well. Conclusion: Anorganic bovine bone xenograft(Bio-$Oss^{(R)}$) has high osteoconductivity and helps new bone formation, so that it can be used in maxillary sinus floor augmentation.

THE EFFECT OF THE BIORESORBABLE COLLAGEN MEMBRANE ON THE REGENERATION OF BONE DEFECT BY USING THE MIXTURE OF AUTOGRAFT AND XENOGRAFT BONE

  • Lee Jung-Min;Kim Yung-Soo;Kim Chang-Whe;Han Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.325-341
    • /
    • 2003
  • Statement of problem: In cases where bony defects were present, guided bone regenerations have been performed to aid the placement of implants. Nowadays, the accepted concept is to isolate bone from soft tissue by using barrier membranes to allow room for generation of new bone. Nonresorbable membranes have been used extensively since the 1980's. However, this material has exhibited major shortcomings. To overcome these faults, efforts were made to develop resorbable membranes. Guided bone regenerations utilizing resorbable membranes were tried by a number of clinicians. $Bio-Gide^{(R)}$ is such a bioresorbable collagen that is easy to use and has shown fine clinical results. Purpose: The aim of this study was to evaluate the histological results of guided bone regenerations performed using resorbable collagen membrane($Bio-Gide^{(R)}$) with autogenous bone, bovine drived xenograft and combination of the two. Surface morphology and chemical composition was analyzed to understand the physical and chemical characteristics of bioresorbable collagen membrane and their effects on guided bone regeneration. Material and methods: Bioresorbable collagen membrane ($Bio-Gide^{(R)}$), Xenograft Bone(Bio-Oss), Two healthy, adult mongrel dogs were used. Results : 1. Bioresorbable collagen membrane is pure collagen containing large amounts of Glysine, Alanine, Proline and Hydroxyproline. 2. Bioresorbable collagen membrane is a membrane with collagen fibers arranged more loosely and porously compared to the inner surface of canine mucosa: This allows for easier attachment by bone-forming cells. Blood can seep into these spaces between fibers and form clots that help stabilize the membrane. The result is improved healing. 3. Bioresorbable collagen membrane has a bilayered structure: The side to come in contact with soft tissue is smooth and compact. This prevents soft tissue penetration into bony defects. As the side in contact with bone is rough and porous, it serves as a stabilizing structure for bone regeneration by allowing attachment of bone-forming cells. 4. Regardless of whether a membrane had been used or not, the group with autogenous bone and $Bio-Oss^{(R)}$ filling showed the greatest amount of bone fill inside a hole, followed by the group with autogenous bone filling, the group with blood and the group with $Bio-Oss^{(R)}$ Filling in order. 5. When a membrane was inserted, regardless of the type of bone substitute used, a lesser amount of resorption occurred compared to when a membrane was not inserted. 6. The border between bone substitute and surrounding bone was the most indistinct with the group with autogenous bone filling, followed by the group with autogenous bone and $Bio-Oss^{(R)}$ filling, the group with blood, and the group with $Bio-Oss^{(R)}$ filling. 7. Three months after surgery, $Bio-Gide^{(R)}$ and $Bio-Oss^{(R)}$ were distinguishable. Conclusion: The best results were obtained with the group with autogenous bone and $Bio-Oss^{(R)}$ filling used in conjunction with a membrane.