• Title/Summary/Keyword: Bio-Heat Equation

Search Result 29, Processing Time 0.024 seconds

Latent Heat of Water Vapor of Rough Rice, Brown Rice, White Rice and Rice Husk

  • Lee, Hyo-Jae;Kim, Dong-Chul;Kim, Oui-Woung;Han, Jae-Woong;Kim, Woong;Kim, Hoon
    • Journal of Biosystems Engineering
    • /
    • v.36 no.4
    • /
    • pp.267-272
    • /
    • 2011
  • The latent heat of vaporization in rough rice, brown rice, white rice and rice hull was calculated by Clausius-Clapeyron equation, which does not require complex constraints as in Othmer method. Equilibrium relative humidity and ratio of the latent heat of vaporization with ln$P_{\upsilon}$ and ln$P_S$ were estimated with moisture contents ranging from 10% (d.b.) to 36% (d.b.) with 2% (d.b.) increment and temperatures ranging from $10^{\circ}C$ to $50^{\circ}C$ with $2.5^{\circ}C$ increment. An empirical equation for calculating the latent heat of vaporization in rice was developed as a function of moisture content and temperature. The equation agreed well with the calculated results. The ratio for latent heat of vaporization were the greatest for white rice while they were similar among rough rice, brown rice and rice hull.

Numerical Study on Skin Burn Injury due to Flash Flame Exposure (돌발화염으로 인한 화상예측에 관한 수치해석적 연구)

  • Lee, Jun-Kyoung;Bang, Chang-Hoon
    • Fire Science and Engineering
    • /
    • v.26 no.5
    • /
    • pp.13-20
    • /
    • 2012
  • Many fire-fighters suffer from the burn injuries, and the severe burns are the most catastrophic injury a person can survive, resulting in pain, emotional stress, and tremendous economic costs. It is important to understand the physiology of burns for prevention from skin burns and a successful treatment of a burn patient. But a few researches have been presented because the complex physical phenomena of our inside body like non-linearity characteristics of human skin make them difficult. Thus in this study, thermal analyses of biological tissues exposed to a flash fire causing severe tissue damage were studied by using a finite difference method based on the Pennes bio-heat equation. The several previous models for skin thermo-physical properties were summarized, and the calculated values with those models of tissue injury were compared with the results obtained by the previous experiment for low heat flux conditions. The skin models with good agreement could be found. Also, the skin burn injury prediction results with the best model for high heat flux conditions by flash flame were suggested.

Inhibitory Effect of adding Phase Change Material (PCM) to Fire Fighter Protective Clothing on Burn Injuries (Phase Change Material (PCM) 소재 적용 소방보호복의 화상발생 억제효과에 관한 연구)

  • Lee, Jun Kyoung
    • Fire Science and Engineering
    • /
    • v.30 no.3
    • /
    • pp.16-22
    • /
    • 2016
  • Fire fighters rely on fire fighter protective clothing (FFPC) to provide adequate protection in the various hazardous environments. To enhance its protection performance, the FFPC material must be thick and thus it is difficult to achieve weight reduction. One of the methods of overcoming this problem, the addition of phase change material (PCM) to FFPC, is a new technology. In previous studies, the researches was mostly related to the temperature characteristics of the fibers incorporating PCM, but little information is available about its effect on burn injuries. Thus, in this study, the inhibitory effects of adding PCM to FFPC on second degree burns were investigated through numerical calculations. Thermal analyses of biological tissues and FFPC with embedded PCM exposed to several fire conditions causing severe tissue damage were studied by using a finite difference method based on the Pennes bio-heat equation. FFPC with embedded PCM was found to provide significantly greater protection than conventional fire fighting clothing, because the heat of absorption due to the phase change within the material is used to limit the heat conduction of the material.

Thermal Steady State in an Anatomical Model of the Human Head under High-Power EM Exposure (고출력 전자기파 노출 환경에서 인체 두부의 온도 변화)

  • Kim, Woo-Tae;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.10
    • /
    • pp.1073-1084
    • /
    • 2010
  • In this paper, the bio-heat equation including thermoregulatory functions is solved for an anatomically based human head model comprised of 14 tissues to study the thermal implications of high-power exposure to electromagnetic(EM) fields due to half-wave dipole antenna both at 835 and 1,800 MHz. The dipole antenna is located at the side of the ear and the front of the eyes. The FDTD method has been used for the SAR computation. When solving the BHE, the thermoregulation function and sweating effetecs are included in order to predict more exact temperature increase. It is noted that an approximately proportional relationship between the tissues and the maximum temperature increase and the antenna power is not maintained when the thermoregulation and sweating effects are fully accounted for under high power exposure.

The Effect of Disaster Prevention of Industrial Field and Failure Detection of Very Small Components for IT (IT용 초소형부품의 불량검출과 산업현장의 재해방지 효과)

  • Park, Dea-Young;Jeong, Yang Guen;Choi, Sun Mi;Byun, Jea Young;Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.1
    • /
    • pp.18-29
    • /
    • 2015
  • This paper presents a feasibility study of a fresh air load reduction system by using an underground double floor space. The system was introduced into a real building and was examined by the field measurement. Judging from the measurements during three years(1999~2001), the state of the system operation was very stable through this period and it was clear that the system contributes to reduction of energy consumption for air-conditioning. Futhermore, a simulation model used the simple heat diffusion equation was developed to simulate its thermal characteristics and performances. The simulations resulted in air temperature in good agreement with the measurements. Also, from the result of numerical analysis, it is clear that the amount of heat supply by using this system is more than the amount of energy loss to the room above it. Therefore, it is concluded that this systems is very useful and the proposed numerical model can be used for the prediction of system thermal performance.

Modeling of Pulsed Laser Heating of Tissue: Implications or Skin Resurfacing (Pulsed Laser를 이용한 생체조직 가열을 위한 모델링 : Skin Resurfacing을 위한 연관성)

  • Kwon, Y.H.;Rastegar, S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.375-379
    • /
    • 1997
  • Pulsed Er:YAG and $CO_2$ lasers induced temperature rise of tissue are studied using axisymmetric, two-dimensional, and transient Pennes' bio-heat equation or the implications of skin resurfacing. Model results indicate that Er:YAG laser induced temperature has much higher but more shallow distribution in tissue than that of the $CO_2$ laser because of its higher absorption coefficient. The increase of repetition rate does not affect the temperature rise too much because these laser modalities have much shorter heat diffusion time than the temporal length of each off-pulse. This model works as a tool to understand the photothermal effect in the laser-tissue interaction.

  • PDF

A PRELIMINARY STUDY OF PULSED LASER HEATING OF TISSUE FOR THE IMPLICATIONS OF SKIN RESURFACING

  • Kwon,Yong-Hoon;Kim, You-Young
    • Journal of Photoscience
    • /
    • v.5 no.1
    • /
    • pp.39-43
    • /
    • 1998
  • Pulsed Er: YAG and CO$_2$ lasers induced temperature rise of tissue is studied using axisymmetric, two-dimensional, and transient Pennes bio-heat equation for elucidating the implications of skin resurfacing. Modeling indicates that Er:YAG laser induced temperature has much higher but more shallow distribution in tissue than that of the CO$_2$ laser because of much higher absorption coefficient. The increase of repetition rate does not much affect on temperature rise because these laser modalities have much shorter heat diffusion time than the temporal length of each off-pulse. This model works as a tool to understand the photothermal effect in the laser-tissue interaction.

  • PDF

Selection of working fluid for cryosurgical probe considering biological heat transfer

  • Hwang, Gyu-Wan;Jeong, Sang-Kwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.4
    • /
    • pp.46-49
    • /
    • 2007
  • This paper describes the sensitive cooling performance change of J-T refrigerator for cryosurgical probe due to its working fluid. The analytical results of using 50 bar nitrous oxide are compared with the case of 300 bar argon. Bio-heat equation is numerically solved to investigate the effect of the probe temperature and the cooling power of the J-T refrigerator. The refrigerator using 50 bar nitrous oxide has larger cooling power above 185 K than the one with 300 bar argon, which enables fast cooling at early stage of cryosurgery, but the biological tissue away from the probe tends to be cooled slowly after the probe reaches its lowest operating temperature. When the repeated freeze-thaw cycle is employed for main tissue destruction mechanism, using high pressure nitrous oxide is more advantageous than argon if the freezing operation is within 2-3 minutes. The probe with high pressure argon is more suitable for the case of longer freeze-thaw cycle with fewer repetitions.

A Study on the Boundary Condition for Analysis of Bio-heat Equation According to Light Irradiation (광조사에 따른 생체열 방정식의 해석을 위한 경계조건의 확립에 대한 연구)

  • Ko, Dong Guk;Bae, Sung Woo;Im, Ik-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.11
    • /
    • pp.853-859
    • /
    • 2015
  • In this study, the temperature change in an imitational biological tissue, when its surface is irradiated with bio-light, was measured by experiments. Using the experimental data, an equation for temperature as a function of time was developed in order to use it as a boundary condition in numerical studies for the model. The temperature profile was measured along the depth for several wavelengths and distances of the light source from the tissue. It was found that the temperature of the tissue increased with increasing wavelength and irradiation time; however, the difference in the temperatures with red light and near infrared light was not large. The numerical analysis results obtained by using the developed equation as boundary condition show good agreement with the measured temperatures.