• Title/Summary/Keyword: Binomial distribution

Search Result 217, Processing Time 0.028 seconds

Tilted beta regression and beta-binomial regression models: Mean and variance modeling

  • Edilberto Cepeda-Cuervo
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.3
    • /
    • pp.263-277
    • /
    • 2024
  • This paper proposes new parameterizations of the tilted beta binomial distribution, obtained from the combination of the binomial distribution and the tilted beta distribution, where the beta component of the mixture is parameterized as a function of their mean and variance. These new parameterized distributions include as particular cases the beta rectangular binomial and the beta binomial distributions. After that, we propose new linear regression models to deal with overdispersed binomial datasets. These new models are defined from the proposed new parameterization of the tilted beta binomial distribution, and assume regression structures for the mean and variance parameters. These new linear regression models are fitted by applying Bayesian methods and using the OpenBUGS software. The proposed regression models are fitted to a school absenteeism dataset and to the seeds germination rate according to the type seed and root.

Diagnosis of Lead Time Demand Based on the Characteristics of Negative Binomial Distribution (음이항분포의 특성을 이용한 조달기간 수요 분석)

  • Ahn Sun-Eung;Kim Woo-Hyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.2
    • /
    • pp.146-151
    • /
    • 2005
  • Some distributions have been used for diagnosing the lead time demand distribution in inventory system. In this paper, we describe the negative binomial distribution as a suitable demand distribution for a specific retail inventory management application. We here assume that customer order sizes are described by the Poisson distribution with the random parameter following a gamma distribution. This implies in turn that the negative binomial distribution is obtained by mixing the mean of the Poisson distribution with a gamma distribution. The purpose of this paper is to give an interpretation of the negative binomial demand process by considering the sources of variability in the unknown Poisson parameter. Such variability comes from the unknown demand rate and the unknown lead time interval.

Diagnosis of Lead Time Demand Based on the Characteristics of Negative Binomial Distribution (음이항분포의 특성을 이용한 조달기간 수요 분석)

  • Ahn, Sun-Eung;Kim, Woo-Hyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.4
    • /
    • pp.79-84
    • /
    • 2005
  • Some distributions have been used for diagnosing the lead time demand distribution in inventory system. In this paper, we describe the negative binomial distribution as a suitable demand distribution for a specific retail inventory management application. We here assume that customer order sizes are described by the Poisson distribution with the random parameter following a gamma distribution. This implies in turn that the negative binomial distribution is obtained by mixing the mean of the Poisson distribution with a gamma distribution. The purpose of this paper is to give an interpretation of the negative binomial demand process by considering the sources of variability in the unknown Poisson parameter. Such variability comes from the unknown demand rate and the unknown lead time interval.

A maximum likelihood estimation method for a mixture of shifted binomial distributions

  • Oh, Changhyuck
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.1
    • /
    • pp.255-261
    • /
    • 2014
  • Many studies have estimated a mixture of binomial distributions. This paper considers an extension, a mixture of shifted binomial distributions, and the estimation of the distribution. The range of each component binomial distribution is rst evaluated and then for each possible value of shifted parameters, the EM algorithm is employed to estimate those parameters. From a set of possible value of shifted parameters and corresponding estimated parameters of the distribution, the likelihood of given data is determined. The simulation results verify the performance of the proposed method.

An Analysis of the Control Limit in p-chart Applying Binomial Distribution Using Commercial Software

  • Yoo Wang-Jin;Park Won-Joo
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 1998.11a
    • /
    • pp.198-207
    • /
    • 1998
  • The p chart approximate to the normal distribution has a difficulty to analyze the process condition precisely when the negative LCL is occurred. Furthermore, the probability of Type I error increases compared with using its original binomial distribution. For a long time the p chart has been used as approximated to the normal distribution because of its easy use. However, it becomes rapid and convenient to calculate the binomial distribution through the development of computer and software, so it is strongly suggested to use the binomial distribution determining control limits to reduce the probability of Type I error. In this study, I suggest that the control limits can be designed in use of binomial distribution and they can be utilized without special software by illustrating the certain work for establishing p-chart with the commercial one(EXCEL).

  • PDF

On Some Distributions Generated by Riff-Shuffle Sampling

  • Son M.S.;Hamdy H.I.
    • International Journal of Contents
    • /
    • v.2 no.2
    • /
    • pp.17-24
    • /
    • 2006
  • The work presented in this paper is divided into two parts. The first part presents finite urn problems which generate truncated negative binomial random variables. Some combinatorial identities that arose from the negative binomial sampling and truncated negative binomial sampling are established. These identities are constructed and serve important roles when we deal with these distributions and their characteristics. Other important results including cumulants and moments of the distributions are given in somewhat simple forms. Second, the distributions of the maximum of two chi-square variables and the distributions of the maximum correlated F-variables are then derived within the negative binomial sampling scheme. Although multinomial theory applied to order statistics and standard transformation techniques can be used to derive these distributions, the negative binomial sampling approach provides more information and deeper insight regarding the nature of the relationship between the sampling vehicle and the probability distributions of these functions of chi-square variables. We also provide an algorithm to compute the percentage points of these distributions. We supplement our findings with exact simple computational methods where no interpolations are involved.

  • PDF

The Role of Negative Binomial Sampling In Determining the Distribution of Minimum Chi-Square

  • Hamdy H.I.;Bentil Daniel E.;Son M.S.
    • International Journal of Contents
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • The distributions of the minimum correlated F-variable arises in many applied statistical problems including simultaneous analysis of variance (SANOVA), equality of variance, selection and ranking populations, and reliability analysis. In this paper, negative binomial sampling technique is employed to derive the distributions of the minimum of chi-square variables and hence the distributions of the minimum correlated F-variables. The work presented in this paper is divided in two parts. The first part is devoted to develop some combinatorial identities arised from the negative binomial sampling. These identities are constructed and justified to serve important purpose, when we deal with these distributions or their characteristics. Other important results including cumulants and moments of these distributions are also given in somewhat simple forms. Second, the distributions of minimum, chisquare variable and hence the distribution of the minimum correlated F-variables are then derived within the negative binomial sampling framework. Although, multinomial theory applied to order statistics and standard transformation techniques can be used to derive these distributions, the negative binomial sampling approach provides more information regarding the nature of the relationship between the sampling vehicle and the probability distributions of these functions of chi-square variables. We also provide an algorithm to compute the percentage points of the distributions. The computation methods we adopted are exact and no interpolations are involved.

A Characterization of Negative Binomial Distribution Truncated at Zero

  • Shanmugam, R.
    • Journal of the Korean Statistical Society
    • /
    • v.11 no.2
    • /
    • pp.131-138
    • /
    • 1982
  • Analogous to Singh's (1978) characterization of positive-Poisson distributioin and Shanmugam and Singh's (1992) characterization of logarithmic series distribution, a characterization and its statistical application of the negative binomial distribution truncated at zero are given in this paper. While it is known that under certain conditions the negative binomial distribution truncted at zero approaches the positive-Poisson and the logarithmic series distributions, we show here that the results of this paper approach in limit the results of Singh, and Shanmugam and Singh, respectively. Using the biologicla data from Sampford (1955), we illusrate our results. Also, expressions are explicitly given to test the hypothesis whether a random sample is indeed from a geometric distribution.

  • PDF

ON SOME MODELS LEADING TO QUASI-NEGATIVE-BINOMIAL DISTRIBUTION

  • Bilal, Sheikh;Hassan, Anwar
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.2
    • /
    • pp.15-29
    • /
    • 2007
  • In this paper, we explore some interesting models of the quasi-negative-binomial distribution based on difference differential equations applicable to theory of microorganisms and the situations like that. Some characterizations based on conditional distributions and damage process have been obtained. Further, the distribution of number of accidents as the quasi-negative-binomial distribution in the light of Irwin's theory of ";proneness-liability"; model has been derived. Finally, the proposed model (QNBD) has been applied to study the Shunting accidents, home injuries, and strikes in industries.

  • PDF

A study for Generalized Binomial Distributions (일반화 이항분포에 관한 연구)

  • 이병수;김희철
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.46
    • /
    • pp.127-136
    • /
    • 1998
  • In many cases where the binomial distribution fails to apply to real world data it is because of more variability in the data than can be explained by that distribution. Several authers have proposed models that are useful in explaining extra-binomial variation. In this paper we point out a characterization of sequences of exchangeable Bernoulli variables which can be used to develop models which show more variability than the binomial. We give sufficient conditions which will yield such models and show how existing models can be continued to generate further models. A numerical example and simulation given.

  • PDF