• Title/Summary/Keyword: Bingham Flow

Search Result 83, Processing Time 0.026 seconds

A Study on the Mechanism of Clusters Formation of ER Fluids (ER유체의 클러스터 형성 메커니즘에 관한 연구)

  • Rhee Eun-Jun.;Park Myeong-Kwan.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.503-506
    • /
    • 2002
  • Electrorheological fluids(ERFs) show a rapid and reversible increase in viscosity by applied electric field. It is called the electrorheological effect (ER effect). The reason for ER effect is the induction of an electric dipole in each particle, leading to the formation of clusters in the direction of the field, which resist fluid flow. Generally, the behavior of ER fluids has been modeled on those of Bingham fluids. But there are some differences between Bingham fluids and ER fluids. The visualization of ER fliuds are presented and ER effects by the forming, growing and breaking of clusters are discussed. In the low shear rate area, the pressure drop is measured by a pressure sensor and the formation of ER particles is visualized by video camera. The reason for the nonlinear behavior of ER fluids at low shear rate is explained through results of visualization.

  • PDF

Electrical and Rheological Behavior of the Anhydrous ER Fluids Based on Chitosan Derivatives as the Dispersion Phases

  • Choi Ung-su;Sung Bo-hyun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.323-329
    • /
    • 2004
  • The electrical and rheological properties pertaining to the electrorheological (ER) behavior of chitosan derivatives, chitosan, chitosan ammonium salt and chitosan phosphate suspensions in silicone oil were investigated. Chitosan derivative suspensions showed a typical ER response (Bingham flow behavior) upon application of an electric field. However, chitosan phosphate suspension exhibited an excellent shear yield stress compared with chitosan and chitosan ammonium salt suspensions. The difference in behavior results from the difference in the conductivity of the disperse phases due to the difference of their polarizability. The shear stress for the chitosan, chitosan ammonium salt and chitosan phosphate suspensions exhibited a linear dependence on the volume fraction of particles and 1.18 ,1.41 and 1.67 powers of the electric field. On the basis of the experimental results, the newly synthesized chitosan derivative suspensions found to be an ER fluid.

  • PDF

Electrical and Rheological Behavior of the Angydrous ER Fluids Based on Chitosan Derviatives as the Dispersion Phases

  • Choi, Ung-Su
    • KSTLE International Journal
    • /
    • v.5 no.2
    • /
    • pp.49-51
    • /
    • 2004
  • The electrical and rheological properties pertaining to the electrorheological (ER) behavior of chitosan derivatives, chitosan, chitosan ammonium salt and chitosan phosphated suspensions in silicone oil were investigated. Chitosan derivative suspensions showed a typical ER response (Bingham flow behavior) upon application of an electric field. However, chitosan phosphate suspension exhibited an excellent shear yield stress compared with chitosan and chitosan ammonium salt suspensions. The difference in behavior results from the difference in the conductivity of the disperse phases due to the difference of their polarizability. The shear stress for the chitosan, chitosan ammonium salt and chitosan phosphate suspensions exhibited a linear dependence on the volume fraction of particles and 1.18, 1.41 and 1.67 powers of the electric field. On athe basis of the experimental results, the newly synthesized chitosan dervative suspensions found to be an ER fluid.

A Magnetorheological Polishing System (자기유변유체를 이용한 연마가공 시스템)

  • 김영민;신영재;이응숙;이동주
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.324-328
    • /
    • 2003
  • The Magnetoeheological fluid has the properties that it's viscosity has dramastic changed under some magnetic fields therefore, Magnetorhlogical fluids has been used for micro polishing of the micro part( for example, a aspherical surface in a micro lens). The polishing process may appears as follows. A part rotating on the spindle is brought into contact with an Magnetorhological finshing(MRF) fluids which is set in motion by the moving wall. In the region where the part and the MRF fulid ate brought into contact, the applied magnetic field creates the conditions necessary for the material removal from the part surface. The material removal takes place in a certain region contacting the surface of the part which can be called the polishing spot or zone. The polishing mechanism of the material removal in the contact zone is considered as a process governed by the particularities of the Bingham flow in the contact zone. Resonable calculated and experimental magnitudes of the material removal rate f3r glass polishing lends support the validity of the approach.

  • PDF

Electrorheological Properties of Aminated Polyacrylonitrile Susupension (아민화 폴리아크로니트릴 유도체 현탁액의 전기유변학적 특성)

  • Choi, Ung-Su;Kim, Choong-Hyun
    • Tribology and Lubricants
    • /
    • v.25 no.3
    • /
    • pp.176-181
    • /
    • 2009
  • Aminated polyacrylonitrile as the new organic disperse phases of the anhydrous ER fluid has been synthesized and ER effect of the suspension composed of aminated polyacrylonitrile in silicone oil investigated. The suspension showed a typical ER response (Bingham flow behavior) upon application of an electric field. The shear stress for the suspension exhibited the dependence with a factor equals to 1.6 power on theelectric field. The current density and the conductivity of the of aminated polyacrylonitrile suspension increase with the electric field intensity and moreover the conductivity of the suspension is about 8 order of magnitude higher than that of the silicone oil. On the basis of the the results, aminated polyacrylonitrile suspension showed the ER flow behavior upon application of the electric field due to the polarizability of the branched amine polar group of the aminated polyacrylonitrile particles.

Vibration control of mechanical systems using semi-active MR-damper

  • Maiti, Dipak K.;Shyju, P.P.;Vijayaraju, K.
    • Smart Structures and Systems
    • /
    • v.2 no.1
    • /
    • pp.61-80
    • /
    • 2006
  • The concept of structural vibration control is to absorb vibration energy of the structure by introducing auxiliary devices. Various types of structural vibration control theories and devices have been recently developed and introduced into mechanical systems. One of such devices is damper employing controllable fluids such as ElectroRheological (ER) or MagnetoRheological (MR) fluids. MagnetoRheological (MR) materials are suspensions of fine magnetizable ferromagnetic particles in a non-magnetic medium exhibiting controllable rheological behaviour in the presence of an applied magnetic field. This paper presents the modelling of an MRfluid damper. The damper model is developed based on Newtonian shear flow and Bingham plastic shear flow models. The geometric parameters are varied to get the optimised damper characteristics. The numerical analysis is carried out to estimate the damping coefficient and damping force. The analytical results are compared with the experimental results. The results confirm that MR damper is one of the most promising new semi-active devices for structural vibration control.

The Development of Polishing System a Magnetorheological Fluids (자기유변유체를 이용한 연마가공 시스템의 개발)

  • 신영재;김동우;이응숙;김경웅
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.46-52
    • /
    • 2004
  • The Magnetorheological fluid has the properties that its viscosity has drastic changed under some magnetic fields therefore, Magnetorheological fluids has been used fur micro polishing of the micro part(for example, a spherical surface in a micro lens). The polishing process may appears as follows. A part rotating on the spindle is brought into contact with an Magnetorheological finishing(MRF) fluids which is set in motion by the moving wall. In the region where the part and the MRF fluid are brought into contact, the applied magnetic field creates the conditions necessary for the material removal from the part surface. The material removal takes place in a certain region contacting the surface of the part which can be called the polishing spot or zone. The polishing mechanism of the material removal in the contact zone is considered as a process governed by the particularities of the Bingham flow in the contact zone. Resonable calculated and experimental magnitudes of the material removal rate for glass polishing lends support the validity of the approach.

Sensitivity and accuracy for rheological simulation of cement-based materials

  • Kim, Jae Hong;Jang, Hye Rim;Yim, Hong Jae
    • Computers and Concrete
    • /
    • v.15 no.6
    • /
    • pp.903-919
    • /
    • 2015
  • The flow of freshly mixed cement-based material shows thixotropy, which implies some difficulties on robust measurement of its rheological properties: The flow curve of thixotropic materials depends on the used protocol. For examples, higher viscosity is obtained when the rate of shear strain is more quickly increased. Even though precise measurement and modelling of the concrete rheology needs to consider the thixotropic effect, engineers in the concrete field prefer considering as a non-thixotropic Herschel-Bulkley fluid, even more simply Bingham fluid. That is due to robustness of the measurement and application in casting process. In the aspect of simplification, this papers attempts to mimic the thixoropic flow by the non-thixotropic Herschel-Bulkley model. Disregarding the thixotropy of cement based materials allows us to adopt the rheological concept in the field. An optimized protocol to measure the Bingham parameters was finally found based on the accuracy and reproducibility test of cement paste samples, which minimizes the error of simulation stemming from the assumption of non-thixotropy.

Dynamic Characteristic Analysis of MR Impact Damper for Vehicle System (차량용 MR 충격댐퍼의 동특성 해석)

  • Song, Hyun-Jeong;Woo, David;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.147-152
    • /
    • 2006
  • This paper presents the dynamic characteristics of MR impact damper for vehicle collision system. Various types of mechanism have been proposed for reduce transmitted force to vehicle chassis and finally protect occupants from injury. In the case of frontal collision, the bumper make main role of isolation material for collision attenuation. In this study, proposed bumper system composed of MR impact damper and structures. The MR impact damper is to adopted MR fluid which has reversible properties with applied magnetic field. MR fluid operates under flow mode with Bingham flow and bellows is used for generation of fluid flow. Mathematical model of MR impact damper incorporated with MR fluid is established. Field dependent damping force is investigated with time and frequency domain. The MR impact damper is then incorporated with vehicle crash system. The governing equation of motion of vehicle model is formulated considering occupant model. Dynamic characteristics of vehicle collision system investigated with computer simulation.

  • PDF

Studies on The Flow Properties of Semi-Solid Dosage Forms (II) : Temperature-Dependent Flow Behavior of Vaseline (반고형제제의 유동특성에 관한 연구 (제2보) : 바셀린의 온도의존성 유동거동)

  • Kim, Jeong-Hwa;Song, Ki-Won;Jang, Gap-Shik;Lee, Jang-Oo;Lee, Chi-Ho
    • YAKHAK HOEJI
    • /
    • v.41 no.1
    • /
    • pp.38-47
    • /
    • 1997
  • Using a concentric cylinder type, rheometer. the steady shear flow properties of vaseline were measured over the temperature range of 20~70${\circ}$C. In this paper, the shea rate and temperature dependencies of its flow behavior were investigated and the validity of some flow models was examined. In addition, the flow characteristics over a wide temperature range were quantitatively evaluated by calculating the various material parameters. Main findings obtained from this study can be summarized as follows: (1) At relatively lower temperature range, vaseline is a plastic fluid with a yield stress and its flow behavior shows shear-thinning characteristics. (2) As the temperature increases, the value of a yield stress and the degree of shear-thinning become smaller, consequently, the Newtonian flow behavior occurs at a lower shear rate range. (3) At temperature range lower than 45${\circ}$C, the flow behavior shows much stronger temperature dependence, and a larger activation energy is needed for flow. (4) The Herschel-Bulkley model is the most effective one g$^3$ to predict the flow behavior of vaseline having a yield stress. The validity of the Bingham and Casson models becomes more available with increasing temperature. The flow behavior of vaseline at temperature range higher than 45${\circ}$C can be perfectly described by the Newton model.

  • PDF