• 제목/요약/키워드: Binding Potential

검색결과 931건 처리시간 0.03초

Synthesis and Evaluation of Oleanolic Acid-Conjugated Lactoferrin for β-Amyloid Plaque Imaging

  • Kim, Sung-Min;Kim, Dongkyu;Chae, Min Kyung;Jeong, Il-Ha;Cho, Jee-Hyun;Choi, Naeun;Lee, Kyo Chul;Lee, Chulhyun;Ryu, Eun Kyoung
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권11호
    • /
    • pp.3671-3675
    • /
    • 2012
  • ${\beta}$-Amyloid accumulation in the brain is a pathological hallmark of Alzheimer's disease (AD). Since early detection of ${\beta}$-amyloid may facilitate more successful and timely therapeutic interventions, many investigators have focused on developing AD diagnostic reagents that can penetrate the blood-brain barrier (BBB). Oleanolic acid (OA) is a substance found in a variety of plants that has been reported to prevent the progression of AD in mice. In this study, we synthesized and evaluated a new radioligand in which OA was conjugated to lactoferrin (Lf, an iron-binding glycoprotein that crosses the BBB) for the diagnosis of AD. In an in vitro study in which OA-Lf was incubated with ${\beta}$-amyloid (1-42) aggregates for 24 h, we found that OA-Lf effectively inhibited ${\beta}$-amyloid aggregation and fibril formation. In vivo studies demonstrated that $^{123}I$-OA-Lf brain uptake was higher than$^{123}I$-Lf uptake. Therefore, radiolabeled OA-Lf may have diagnostic potential for ${\beta}$-amyloid imaging.

이트륨 함량에 따른 Pd-Ir-Y 3원계 합금 촉매 입자의 특성과 산소 환원 반응의 활성 비교 (Comparison of the Characteristics of Pd-Ir-Y Ternary Alloy Catalyst Particles and Oxygen Reduction Activity According to Yttrium Contents)

  • 김도형;이은애;박찬호
    • 한국수소및신에너지학회논문집
    • /
    • 제29권3호
    • /
    • pp.260-266
    • /
    • 2018
  • To enhance catalyst activity of the palladium (Pd) towards oxygen reduction reaction (ORR), iridium (Ir) and yttrium (Y) were alloyed by polyol method. Due to the low reduction potential of Y, it is hard to reduce Y ion completely by polyol method. In XPS spectra, the binding energy of the Pd is shifted to a lower value, which indicates the d-electron of Pd is filled by the electron from the Y. And other phases of Y are observed by the XPS. Among the catalysts, the $Pd_4IrY_{0.1}/C$ showed the best activity towards ORR, which indicates the metallic Y is effective for improving the catalytic activity. Thus, for further enhancing ORR activity, the novel method for complete reduction of Y is needed.

Comparative Genomics of T-complex protein 10 like in Humans and Chimpanzees

  • Kim, Il-Chul;Kim, Dae-Soo;Kim, Dae-Won;Choi, Sang-Haeng;Choi, Han-Ho;Chae, Sung-Hwa;Park, Hong-Seog
    • Genomics & Informatics
    • /
    • 제3권2호
    • /
    • pp.61-65
    • /
    • 2005
  • Comparing 231 genes on chimpanzee chromosome 22 with their orthologous on human chromosome 21, we have found that 15 orthologs have indels within their coding sequences. It was rather surprising that significant number of genes have changed by indel, despite the shorter time since their divergence and led us hypothesize that indels and structural changes may represent one of the major mechanism of proteome evolution in the higher primates. Human T-complex protein 10 like (TCP 10L) is a representative having indel within its coding sequence. Gene structure of human TCP10L compared with chimpanzee TCP10L gene showed 16 base pair difference in genomic DNA. As a result of the indel, frame shift mutation occurs in coding sequence (CDS) and human TCP10L express longer polypeptide of 21 amino acid residues than that of chimpanzee. Our prediction found that the indel may affect to dramatic change of secondary protein structure between human and chimpanzee TCP10L. Especially, the structural changes in the C-terminal region of TCP10L protein may affect on the interacting potential to other proteins rather than DNA binding function of the protein. Through these changes, TCP10L might influence gene expression profiles in liver and testis and subsequently influence the physiological changes required in primate evolution.

Molecular Characterization of Legionellosis Drug Target Candidate Enzyme Phosphoglucosamine Mutase from Legionella pneumophila (strain Paris): An In Silico Approach

  • Hasan, Md. Anayet;Mazumder, Md. Habibul Hasan;Khan, Md. Arif;Hossain, Mohammad Uzzal;Chowdhury, A.S.M. Homaun Kabir
    • Genomics & Informatics
    • /
    • 제12권4호
    • /
    • pp.268-275
    • /
    • 2014
  • The harshness of legionellosis differs from mild Pontiac fever to potentially fatal Legionnaire's disease. The increasing development of drug resistance against legionellosis has led to explore new novel drug targets. It has been found that phosphoglucosamine mutase, phosphomannomutase, and phosphoglyceromutase enzymes can be used as the most probable therapeutic drug targets through extensive data mining. Phosphoglucosamine mutase is involved in amino sugar and nucleotide sugar metabolism. The purpose of this study was to predict the potential target of that specific drug. For this, the 3D structure of phosphoglucosamine mutase of Legionella pneumophila (strain Paris) was determined by means of homology modeling through Phyre2 and refined by ModRefiner. Then, the designed model was evaluated with a structure validation program, for instance, PROCHECK, ERRAT, Verify3D, and QMEAN, for further structural analysis. Secondary structural features were determined through self-optimized prediction method with alignment (SOPMA) and interacting networks by STRING. Consequently, we performed molecular docking studies. The analytical result of PROCHECK showed that 95.0% of the residues are in the most favored region, 4.50% are in the additional allowed region and 0.50% are in the generously allowed region of the Ramachandran plot. Verify3D graph value indicates a score of 0.71 and 89.791, 1.11 for ERRAT and QMEAN respectively. Arg419, Thr414, Ser412, and Thr9 were found to dock the substrate for the most favorable binding of S-mercaptocysteine. However, these findings from this current study will pave the way for further extensive investigation of this enzyme in wet lab experiments and in that way assist drug design against legionellosis.

Sequence Analysis of Hypothetical Proteins from Helicobacter pylori 26695 to Identify Potential Virulence Factors

  • Naqvi, Ahmad Abu Turab;Anjum, Farah;Khan, Faez Iqbal;Islam, Asimul;Ahmad, Faizan;Hassan, Md. Imtaiyaz
    • Genomics & Informatics
    • /
    • 제14권3호
    • /
    • pp.125-135
    • /
    • 2016
  • Helicobacter pylori is a Gram-negative bacteria that is responsible for gastritis in human. Its spiral flagellated body helps in locomotion and colonization in the host environment. It is capable of living in the highly acidic environment of the stomach with the help of acid adaptive genes. The genome of H. pylori 26695 strain contains 1,555 coding genes that encode 1,445 proteins. Out of these, 340 proteins are characterized as hypothetical proteins (HP). This study involves extensive analysis of the HPs using an established pipeline which comprises various bioinformatics tools and databases to find out probable functions of the HPs and identification of virulence factors. After extensive analysis of all the 340 HPs, we found that 104 HPs are showing characteristic similarities with the proteins with known functions. Thus, on the basis of such similarities, we assigned probable functions to 104 HPs with high confidence and precision. All the predicted HPs contain representative members of diverse functional classes of proteins such as enzymes, transporters, binding proteins, regulatory proteins, proteins involved in cellular processes and other proteins with miscellaneous functions. Therefore, we classified 104 HPs into aforementioned functional groups. During the virulence factors analysis of the HPs, we found 11 HPs are showing significant virulence. The identification of virulence proteins with the help their predicted functions may pave the way for drug target estimation and development of effective drug to counter the activity of that protein.

Proteinase 3-processed form of the recombinant IL-32 separate domain

  • Kim, Sun-Jong;Lee, Si-Young;Her, Erk;Bae, Su-Young;Choi, Ji-Da;Hong, Jae-Woo;JaeKal, Jun;Yoon, Do-Young;Azam, Tania;Dinarello, Charles A.;Kim, Soo-Hyun
    • BMB Reports
    • /
    • 제41권11호
    • /
    • pp.814-819
    • /
    • 2008
  • Interleukin-32 (IL-32) induces a variety of proinflammatory cytokines and chemokines. The IL-32 transcript was reported originally in activated T cells; subsequently, it was demonstrated to be abundantly expressed in epithelial and endothelial cells upon stimulation with inflammatory cytokines. IL-32 is regulated robustly by other major proinflammatory cytokines, thereby suggesting that IL-32 is crucial to inflammation and immune responses. Recently, an IL-32$\alpha$-affinity column was employed in order to isolate an IL-32 binding protein, neutrophil proteinase 3 (PR3). Proteinase 3 processes a variety of inflammatory cytokines, including TNF$\alpha$, IL-$1{\beta}$, IL-8, and IL-32, thereby enhancing their biological activities. In the current study, we designed four PR3-cleaved IL-32 separate domains, identified by potential PR3 cleavage sites in the IL-32$\alpha$ and $\gamma$ polypeptides. The separate domains of the IL-32 isoforms $\alpha$ and $\gamma$ were more active than the intrinsic $\alpha$ and $\gamma$ isoforms. Interestingly, the N-terminal IL-32 isoform $\gamma$ separate domain evidenced the highest levels of biological activity among the IL-32 separate domains.

Immunoglobulin Can Be Functionally Regulated by Protein Carboxylmethylation in Fc Region

  • Park Jong-Sun;Cho Jae-Youl;Kim Sung-Soo;Bae Hyun-Jin;Han Jeung-Whan;Lee Hyang-Woo;Hong Sung-Youl
    • Archives of Pharmacal Research
    • /
    • 제29권5호
    • /
    • pp.384-393
    • /
    • 2006
  • Protein carboxylmethylation methylates the free carboxyl groups in various substrate proteins by protein carboxyl O-methyltransferase (PCMT) and is one of the post-translational modifications. There have been many studies on protein carboxylmethylation. However, the precise functional role in mammalian systems is unclear. In this study, immunoglobulin, a specific form of $\gamma-globulin$, which is a well-known substrate for PCMT, was chosen to investigate the regulatory roles of protein carboxylmethylation in the immune system. It was found that the anti-BSA antibody could be carboxylmethylated via spleen PCMT to a level similar to $\gamma-globulin$. This carboxylmethylation increased the hydrophobicity of the anti-BSA antibody up to 11.4%, and enhanced the antigen-binding activity of this antibody up to 24.6%. In particular, the Fc region showed a higher methyl accepting capacity with 80% of the whole structure level. According to the amino acid sequence alignment, indeed, 7 aspartic acids and 5 glutamic acids, as potential carboxylmethylation sites, were found to be conserved in the Fc portion in the human, mouse and rabbit. The carboxylmethylation of the anti-BSA antibody was reversibly demethylated under a higher pH and long incubation time. Therefore, these results suggest that protein carboxylmethylation may reversibly regulate the antibody-mediated immunological events via the Fc region.

A Capillary Electrochromatographic Microchip Packed with Self-Assembly Colloidal Carboxylic Silica Beads

  • Jeon, In-Sun;Kim, Shin-Seon;Park, Jong-Man
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권4호
    • /
    • pp.1135-1140
    • /
    • 2012
  • An electrochromatographic microchip with carboxyl-group-derivatized mono-disperse silica packing was prepared from the corresponding colloidal silica solution by utilizing capillary action and self-assembly behavior. The silica beads in water were primed by the capillary action toward the ends of cross-patterned microchannel on a cyclic olefinic copolymer (COC) substrate. Slow evaporation of water at the front of packing promoted the self-assembled packing of the beads. After thermally binding a cover plate on the chip substrate, reservoirs for sample solutions were fabricated at the ends of the microchannel. The packing at the entrances of the microchannel was silver coated to fix utilizing an electroless silver-plating technique to prevent the erosion of the packed structure caused by the sudden switching of a high voltage DC power source. The electrochromatographic behavior of the microchip was explored and compared to that of the microchip with bare silica packing in basic borate buffer. Electrophoretic migration of Rhodamine B was dominant in the microchip with the carboxyl-derivatized silica packing that resulted in a migration approximated twice as fast, while the reversible adsorption was dominant in the bare silica-packed microchip. Not only the faster migration rates of the negatively charged FITC-derivatives of amino acids but also the different migration due to the charge interaction at the packing surface were observed. The electrochromatographic characteristics were studied in detail and compared with those of the bare silica packed microchip in terms of the packing material, the separation potential, pH of the running buffer, and also the separation channel length.

Azasugar-Containing Phosphorothioate Oligonucleotide (AZPSON) DBM-2198 Inhibits Human Immunodeficiency Virus Type 1 (HIV-1) Replication by Blocking HIV-1 gp120 without Affecting the V3 Region

  • Lee, Jinjoo;Byeon, Se Eun;Jung, Ju Yeol;Kang, Myeong-Ho;Park, Yu-Jin;Jung, Kyeong-Eun;Bae, Yong-Soo
    • Molecules and Cells
    • /
    • 제38권2호
    • /
    • pp.122-129
    • /
    • 2015
  • DBM-2198, a six-membered azasugar nucleotide (6-AZN)-containing phosphorothioate (P = S) oligonucleotide (AZPSON), was described in our previous publication [Lee et al. (2005)] with regard to its antiviral activity against a broad spectrum of HIV-1 variants. This report describes the mechanisms underlying the anti-HIV-1 properties of DBM-2198. The LTR-mediated reporter assay indicated that the anti-HIV-1 activity of DBM-2198 is attributed to an extracellular mode of action rather than intracellular sequence-specific antisense activity. Nevertheless, the antiviral properties of DBM-2198 and other AZPSONs were highly restricted to HIV-1. Unlike other P = S oligonucleotides, DBM-2198 caused no host cell activation upon administration to cultures. HIV-1 that was pre-incubated with DBM-2198 did not show any infectivity towards host cells whereas host cells pre-incubated with DBM-2198 remained susceptible to HIV-1 infection, suggesting that DBM-2198 acts on the virus particle rather than cell surface molecules in the inhibition of HIV-1 infection. Competition assays for binding to HIV-1 envelope protein with anti-gp120 and anti-V3 antibodies revealed that DBM-2198 acts on the viral attachment site of HIV-1 gp120, but not on the V3 region. This report provides a better understanding of the antiviral mechanism of DBM-2198 and may contribute to the development of a potential therapeutic drug against a broad spectrum of HIV-1 variants.

Lipoteichoic Acid Isolated from Lactobacillus plantarum Inhibits Melanogenesis in B16F10 Mouse Melanoma Cells

  • Kim, Hye Rim;Kim, Hangeun;Jung, Bong Jun;You, Ga Eun;Jang, Soojin;Chung, Dae Kyun
    • Molecules and Cells
    • /
    • 제38권2호
    • /
    • pp.163-170
    • /
    • 2015
  • Lipoteichoic acid (LTA) is a major component of the cell wall of Gram-positive bacteria. Its effects on living organisms are different from those of lipopolysaccharide (LPS) found in Gram-negative bacteria. LTA contributes to immune regulatory effects including anti-aging. In this study, we showed that LTA isolated from Lactobacillus plantarum (pLTA) inhibited melanogenesis in B16F10 mouse melanoma cells. pLTA reduced the cellular activity of tyrosinase and the expression of tyrosinase family members in a dose-dependent manner. The expression of microphthalmia- associated transcription factor (MITF), a key factor in the synthesis of melanin, was also decreased by pLTA. Further, we showed that pLTA activated melanogenesis signaling, such as extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinse (PI3K)/AKT. In addition, the expression of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and HuR, which are important RNA-binding proteins (RBPs), was reduced. pLTA likely degrades MITF via regulation of melanogenic signaling and RNA stability of melanogenic proteins, resulting in the reduction of melanin. Thus, our data suggest that pLTA has therapeutic potential for treating hyperpigmentation disorders and can also be used as a cosmetic whitening agent.