• Title/Summary/Keyword: Binding Interface

Search Result 103, Processing Time 0.023 seconds

Moieties of Complement iC3b Recognized by the I-domain of Integrin αXβ2

  • Choi, Jeongsuk;Buyannemekh, Dolgorsuren;Nham, Sang-Uk
    • Molecules and Cells
    • /
    • v.43 no.12
    • /
    • pp.1023-1034
    • /
    • 2020
  • Complement fragment iC3b serves as a major opsonin for facilitating phagocytosis via its interaction with complement receptors CR3 and CR4, also known by their leukocyte integrin family names, αMβ2 and αXβ2, respectively. Although there is general agreement that iC3b binds to the αM and αX I-domains of the respective β2-integrins, much less is known regarding the regions of iC3b contributing to the αX I-domain binding. In this study, using recombinant αX I-domain, as well as recombinant fragments of iC3b as candidate binding partners, we have identified two distinct binding moieties of iC3b for the αX I-domain. They are the C3 convertase-generated N-terminal segment of the C3b α'-chain (α'NT) and the factor I cleavage-generated N-terminal segment in the CUBf region of α-chain. Additionally, we have found that the CUBf segment is a novel binding moiety of iC3b for the αM I-domain. The CUBf segment shows about a 2-fold higher binding activity than the α'NT for αX I-domain. We also have shown the involvement of crucial acidic residues on the iC3b side of the interface and basic residues on the I-domain side.

A New Component Model and Framework for Reuse of Components (컴포넌트 재사용을 지원하는 컴포넌트 모델 및 프레임워크)

  • Lim, Yoon-Sun;Kim, Myung;Jeong, Seung-Nam;Jeong, An-Mo
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.12
    • /
    • pp.1011-1020
    • /
    • 2007
  • It is difficult to assemble independently developed software components because of discrepancies between their interfaces. In order to resolve such problem, we propose a new component model, Active Binding Technology, in which each component has its own independently-defined interface for service request that is revealed in its metadata, instead of passively following the interface of a service-providing component. This model Includes the use of the glue component, an interface mediating place, whose template code is automatically generated by reading in the metadata of the components to be combined. We also propose a runtime framework that holds the pool of component instances, completes the assembly of components in the manner of dependency injection, and performs middleware services and real-time system monitoring through glue components. In order to test the practical value of Active Binding Technology, we have made a tool, which supports the development and assembly of Active Binding components.

Development of Efficient User Navigation Interface for Client-side Mashups (클라이언트 매시업의 편리한 이동 사용자 인터페이스 개발)

  • Lee, Eun-Jung
    • The KIPS Transactions:PartD
    • /
    • v.18D no.3
    • /
    • pp.205-214
    • /
    • 2011
  • Client based web mashups have become one of the most important architecture in web application development. Although there are well known methods to generate presentation view codes for web services, navigations between views and service requests are still developed manually in most web mashups. In this paper, we propose the concept of deterministic data binding from output data to input parameters of another method. Using binding relations, we can model navigation menus for service method requests. For a given set of data mappings between services, we investigate context dependent binding conditions and discuss the generation of views and navigation menus. The proposed approach provides UI for users to navigate services of client mashup page using simple and convenient interface even when the number of services and the size of the mashup page grows. In order to show the usability of the proposed approach, we present a historic tourism service.

Enhanced binding between metals and CNT surface mediated by oxygen

  • Park, Mi-Na;Kim, Byeong-Hyeon;Lee, Gwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.61-61
    • /
    • 2010
  • In the present work, we present the optimized the hybrid structures of carbon nanotubes (CNTs) and metal nanocomposites including Cu, Al, Co and Ni using the first principle calculations based on the density functional theory. Introduction of CNTs into a metal matrix has been considered to improve the mechanical properties of the metal matrix. However, the binding energy between metals and pristine CNTs wall is known to be so small that the interfacial slip between CNTs and the matrix occurs at a relatively low external stress. The application of defective or functionalized CNTs has thus attracted great attention to enhance the interfacial strength of CNT/metal nanocomposites. Herein, we design the various hybrid structures of the single wall CNT/metal complexes and characterize the interaction between single wall CNTs and various metals such as Cu, Al, Co or Ni. First, differences in the binding energies or electronic structures of the CNT/metal complexes with the topological defects, such as the Stone-Wales and vacancy, are compared. Second, the characteristics of functionalized CNTs with various surface functional groups, such as -O, -COOH, -OH interacting with metals are investigated.We found that the binding energy can be enhanced by the surface functional group including oxygen since the oxygen atom can mediate and reinforce the interaction between carbon and metal. The binding energy is also greatly increased when it is absorbed on the defects of CNTs. These results strongly support the recent experimental work which suggested the oxygen on the interface playing an important role in the excellent mechanical properties of the CNT-Cu composite[1].

  • PDF

In-situ XPS Study of Core-levels of ZnO Thin Films at the Interface with Graphene/Cu

  • Choi, Jinsung;Jung, Ranju
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1546-1549
    • /
    • 2018
  • We have investigated core-levels of ZnO thin films at the interface with the graphene on Cu foil using in-situ X-ray Photoelectron Spectroscopy (XPS). Spectral evolution of C 1s, Zn 2p, and O 1s are observed in real time during RF sputtering deposition. We found binding energy (BE) shifts of Zn 2p and 'Zn-O' state of O 1s depending on ZnO film thickness. Core-levels BE shifts of ZnO will be discussed on the basis of electron transfer at the interface and it may have an important role in the electronic transport property of the ZnO/graphene-based electronic device.

Design of a Binding for the performance Improvement of 3D Engine based on the Embedded Mobile Java Environment (자바 기반 휴대용 임베디드 기기의 삼차원 엔진 성능 향상을 위한 바인딩 구현)

  • Kim, Young-Ouk;Roh, Young-Sup
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.11
    • /
    • pp.1460-1471
    • /
    • 2007
  • A 3-Dimensional engine in a mobile embedded device is divided into a C-based OpenGL/ES and a Java-based JSR184 which interprets and executes a byte code in a real-time. In these two standards, the JSR184 supporting Java objects uses more processor resources than an OpenGL/ES and thus has a constraint when it is used in an embedded device with a limited computing power. On the other hand, 3-Dimensional contents employed in existing personal computer are created by utilizing advantages of Java and secured numerous users in European market, due to the good quality in contents and extensive service in a commercial network, GSM. Because of the reason, a mobile embedded device used in a GSM network needs a JSR184 which can provide an existing Java-based 3-Dimensional contents without extra conversion processes, but the current version of Java-based 3-Dimensional engine has drawbacks in application to commercial products because it requires more computing power than the mobile embedded device. This paper proposes a binding technique with the advantages of Java objects to improve a processing speed of 3-Dimensional contents in limited resources of a mobile embedded device. The technique supports a JSR184 standard interface in the upper layer to utilize 3-Dimensional contents using Java, employs a different code-conversion language, KNI(Kilo Native Interface), in the middle layer to interface between OpenGL/ES and JSR184, and embodies an OpenGL/ES standard in the lower layer. The validity of the binding technique is demonstrated through a simulator and a FPGA embedding an ARM.

  • PDF

ISO에서의 그래픽스 표준화활동의 현황

  • Kim, Gyeong-Su;Park, U-Jeon
    • ETRI Journal
    • /
    • v.8 no.1
    • /
    • pp.53-58
    • /
    • 1986
  • ISO(International Standard Organization) TC97/SC21/WG2는 컴퓨터그래픽스 표준화를 담당하고 있다. 본고에서는 ISO의 자료를 중심으로 해서 그래픽 정보의 표현, language binding. device interface 및 시스팀간 이식성 제고를 위한 여러가지 표준화 활동의 개요를 정리하였다.

  • PDF

Structural Studies of Peptide Binding Interaction of HCV IRES Domain IV

  • Shin, Ji Yeon;Bang, Kyeong-Mi;Song, Hyun Kyu;Kim, Nak-Kyoon
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.3
    • /
    • pp.109-113
    • /
    • 2017
  • The hepatitis C virus (HCV) internal ribosome entry site (IRES) is an RNA structure located in the 5'-UTR of the HCV RNA genome. The HCV IRES consists of four domains I, II, III, and IV, where domains II - IV are recognized by 40S ribosomal subunit and the domain III is bound to eukaryotic initiation factor 3 (eIF3) for translation initiation. Here, we have characterized the tertiary interaction between an L-/K- rich peptide and the HCV IRES domain IV. To probe the peptide binding interface in RNA, we synthesized $^{13}C$- and $^{15}N$-double labeled RNA and the binding site was identified by using the chemical shift perturbation (CSP) NMR methods. Our results showed that the peptide binds to the upper stem of the IRES domain IV, indicating that the tertiary interaction between the IRES domain IV and the peptide would disrupt the initiation of translation of HCV mRNA by blocking the start codon exposure. This study will provide an insight into the new peptide-based anti-viral drug design targeting HCV IRES RNA.

Development of an X3D Python Language Binding Viewer Providing a 3D Data Interface (3D 데이터 인터페이스를 제공하는 X3D Python 언어 바인딩 뷰어 개발)

  • Kim, Ha Seong;Lee, Myeong Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.6
    • /
    • pp.243-250
    • /
    • 2021
  • With the increased development of 3D VR applications augmented by recent VR/AR/MR technologies and by the advance of 3D devices, interchangeability and portability of 3D data have become essential. 3D files should be processed in a standard data format for common usage between applications. Providing standardized libraries and data structures along with the standard file format means that a more efficient system organization is possible and unnecessary processing due to the usage of different file formats and data structures depending on the applications can be omitted. In order to provide the function of using a common data file and data structure, this research is intended to provide a programming binding tool for generating and storing standardized data so that various services can be developed by accessing the common 3D files. To achieve this, this paper defines a common data structure including classes and functions to access X3D files with a standardized scheme using the Python programming language. It describes the implementation of a Python language binding viewer, which is an X3D VR viewer for rendering standard X3D data files based on the language binding interface. The VR viewer includes Python based 3D scene libraries and a data structure for creation, modification, exchange, and transfer of X3D objects. In addition, the viewer displays X3D objects and processes events using the libraries and data structure.

The High Resolution NMR Solution Structure of Monocyte Chemoattractant Protein-3

  • Kwon Do-Yoon;Lee Duck-Yeon;Sykes Brian D.;Kim Key-Sun
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.9 no.2
    • /
    • pp.74-92
    • /
    • 2005
  • The high resolution solution structure of MCP-3 was determined using multinuclear, multidimensional NMR spectroscopy with an expressed and $^{13}C-\;and\;^{15}N-labeled$ protein. The MCP-3 has a typical chemokine fold including 3 anti-parallel $\beta-sheets$, and a C-terminal helix, but it exists as a monomer in solution under the conditions where the structure was determined (2 mM, pH 5.1 at $30^{\circ}C$). Based on the structure and the amino acid sequence compared to other chemokines we propose that Ile20 and Leu25 in MCP-3 play key roles in the formation of N-loop (residues between the $2^{nd}$ cysteine and the I sheet) which has been implicated as a determinant of chemokine specificity. Additional receptor binding surface is supplied by the 40s loop (residues between the 2 and the 3 sheet) and the binding interface of the acidic N-terminal region of chemokine receptor to MCP-3 would resemble the dimerization interface of CC type dimer.

  • PDF