Browse > Article
http://dx.doi.org/10.3938/jkps.73.1546

In-situ XPS Study of Core-levels of ZnO Thin Films at the Interface with Graphene/Cu  

Choi, Jinsung (Department of Electrical and Biological Physics, Kwangwoon University)
Jung, Ranju (Department of Electrical and Biological Physics, Kwangwoon University)
Abstract
We have investigated core-levels of ZnO thin films at the interface with the graphene on Cu foil using in-situ X-ray Photoelectron Spectroscopy (XPS). Spectral evolution of C 1s, Zn 2p, and O 1s are observed in real time during RF sputtering deposition. We found binding energy (BE) shifts of Zn 2p and 'Zn-O' state of O 1s depending on ZnO film thickness. Core-levels BE shifts of ZnO will be discussed on the basis of electron transfer at the interface and it may have an important role in the electronic transport property of the ZnO/graphene-based electronic device.
Keywords
Graphene; ZnO; In-situ XPS; Interface; Thin film; Electron transfer; Dipole;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z. Li, R. Yang, M. Yu, F. Bai, C. Li and Z. L. Wang, J. Phys. Chem. C 112, 20114 (2008).   DOI
2 B. Li and H. Cao, J. Mater. Chem. 21, 3346 (20100).   DOI
3 Y. Y. Hui, G. Tai, Z. Sun, Z. Xu, N. Wang, F. Yan and S. P. Lau, Nanoscale 4, 3118 (2012).   DOI
4 J. O. Hwang, J. S. Park, D. S. Choi, J. Y. Kim, S. H. Lee, K. E. Lee, Y-H. Kim, M. H. Song, S. Yoo and S. O. Kim, ACS Nano 6, 159 (2012).   DOI
5 J. S. Park, J. M. Lee, S. K. Hwang, S. H. Lee, H-J. Lee, B. R. Lee, H. I. Park, J-S. Kim, S. Yoo, M. H. Song and S. O. Kim, J. Mater. Chem. 22, 12695 (2012).   DOI
6 M. Law, L. E. Greene, J. C. Johnson, R. Saykally and P. Yang, Nat. Mater. 4, 42 (2005).
7 K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi and K. Domen, J. Am. Chem. Soc. 127, 8286 (2005).   DOI
8 S-J. Chang, I-C. Chen and B-R. Huang, Nanotechnology 19, 175502 (2008).   DOI
9 F. M. Simanjuntak, D. Panda, K-H.Wei and T-Y. Tseng, Nanoscale Research Letters 11, 368 (2016).   DOI
10 J. O. Hwang, J. S. Park, D. S. Choi, J. Y. Kim, S. H. Lee, K. E. Lee, Y-H. Kim, M. H. Song, S. Yoo and S. O. Kim, ACS Nano 6, 159 (2012).   DOI
11 A. Guermoune, T. Chari, F. Popescu, S. Sabri, J. Guillemette, H. Skulason, T. Szkopek and M. Siaj, Carbon 49, 4204 (2011).   DOI
12 A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Picsanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).   DOI
13 D. Yoon, H. Moon, H. Cheong, J. S. Choi, J. A. Choi and B. H. Park, J. Korean Phys. Soc. 55, 1299 (2009).   DOI
14 W. Geng, X. Zhao, H. Liu and X. Yao, J. Phys. Chem. C 117, 10536 (2013).   DOI
15 C-H. Min, S. Cho, S-H. Lee, D-Y. Cho, W. G. Park, J. G. Chung, E. Lee, J. C. Lee, B. Anass, J. H. Lee, C. S. Hwang and S-J. Oh, Appl. Phys. Lett. 96, 201907 (2010).   DOI
16 C. N. Peter, W. W. Anku, S. K. Shukla and P. P. Govender, Theoretical Chem. Accounts 137, 75 (2018).   DOI