• 제목/요약/키워드: Binding Energy

검색결과 771건 처리시간 0.035초

Correlation Between Arrhenius Equation and Binding Energy by X-ray Photoelectron Spectroscopy

  • Oh, Teresa
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권6호
    • /
    • pp.329-333
    • /
    • 2013
  • SiOC films were prepared by capacitively coupled plasma chemical vapor deposition, and the correlation between the binding energy by X-ray photoelectron spectroscopy and Arrhenius equation for ionization energy was studied. The ionization energy decreased with increase of the potential barrier, and then the dielectric constant also decreased. The binding energy decreased with increase of the potential barrier. The dielectric constant and electrical characteristic of SiOC film was obtained by Arrhenius equation. The dielectric constant of SiOC film was decreased by lowering the polarization, which was made from the recombination between opposite polar sites, and the dissociation energy during the deposition. The SiOC film with the lowest dielectric constant had a flat surface, which depended on how carbocations recombined with other broken bonds of precursor molecules, and it became a fine cross-linked structure with low ionization energy, which contributed to decreasing the binding energy by Si 2p, C 1s electron orbital spectra and O 1s electron orbital spectra. The dielectric constant after annealing decreased, owing to the extraction of the $H_2O$ group, and lowering of the polarity.

Binding Studies of Erythromycin A and its Analogues using Molecular Docking Technique

  • Kamarulzaman, Ezatul Ezleen;Mordi, Mohd Nizam;Mansur, Shariff Mahsufi;Wahab, Habibah
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.35-40
    • /
    • 2005
  • Interaction of twelve erythromycin A analogues with 50S ribosomal subunit were studied employing AutoDock 3.0.5. Results showed that all active macrolides bound at the same binding site with erythromycin A in contrast to the inactive analogues which bound at location slightly different than erythromycin A. The binding site showed consistency with the X-ray data from the perspectives of hydrogen bonding and hydrophobic interactions formed by erythromycins, roxithromycin, azithromycin, cethromycin and telithromycin with the ribosome. The inactive derivatives of erythromycin A anhydride showed higher binding free energy, while 5-desosaminyl erythronolides A and B even though having quiet similar values of binding free energy with the active analogues, docked at binding sites which are quiet different than the active analogues. These results suggest the molecular docking technique can be used in predicting the binding of erythromycin A analogues to their ribosomal target.

  • PDF

CdTe 단결정에서 중성 받게에 구속된 엑시톤의 열 해리 (Thermal dissociation of excitons bound to neutral acceptors in CdTe single crystal)

  • 박효열
    • 한국결정성장학회지
    • /
    • 제10권3호
    • /
    • pp.185-188
    • /
    • 2000
  • CdTe 단결정에서 중성 받게에 구속된 엑시톤 해리를 PL 스펙트럼의 온도의존성을 측정하여 조사하였다. 12 K에서 CdTe 단결정의 자유 엑시톤의 결합 에너지는 10 meV이고,중성받게에 구속된 결합 에너지는 7.17 meV 이며, 또 중성주게에 구속된 결합 에너지는 14 meV이였다. 또한 ($A^{\circ}$, X)의 활성화 에너지의 값으로부터($A^{\circ}$, X)의 해리는 자유 엑시톤에서 해리됨을 알 수 있었다.

  • PDF

Analysis of Dissociation Pathway of HET-s Prion Using Steered Pulling Simulation

  • Kim, Minwoo;Cho, Tony;Shin, Seokmin
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제6회(2017년)
    • /
    • pp.32-38
    • /
    • 2017
  • Prion is a group of the proteins known for its infection mechanisms of Creutzfeldt-Jakob disease (CJD) and other diseases. Solved structures and proven biological roles of fungal prions add tremendous potential to conducting computational simulations. Our research focuses on the binding dynamics of HET-s(218-289), one of the heterokaryon fungal prion originated from Podospora anserina, by calculating the binding free energy using umbrella sampling at 300 K. The binding free energy calculated was $-54.5kcal\;mol^{-1}$, relatively similar to the binding energy of other amyloid fibrils. The simulation result suggests the thermodynamic properties of ${\beta}$-solenoid of HET-s prion and its similarity in dissociation pathways compared to amyloids.

  • PDF

Ligand Binding energy of CdS/ZnS various interfaces: ab-initio study intimately related with anisotropic CdS/ZnS quantum rod growth

  • Jeong, Incheol
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제4회(2015년)
    • /
    • pp.292-295
    • /
    • 2015
  • The effect of Ligand Binding energy in quantum rod (CdS/ZnS) plays a critical role in anisotropic growth. As mimicking large chain of ligands and using the head of the chain, I plan to bind the quantum rod and ligands so that it can grow well consequently. So the ultimate goal of this study is on how ligand binding can affect the growth of this quantum rod. There are preferred surfaces between the quantum rod and ligands, and we empirically know that ligands which bind the quantum rod; Phosphoric oxide (PO), Phosphoric acid(PA), Carboxylic acid(CA), Trimethylamine(TMA), have strong tendency to be attached on the surfaces of CdS/ZnS; ($11{\bar{2}}0$), ($10{\bar{1}}0$), ($000{\bar{1}}$), (0001). I virtually bond the surface and the ligands, and calculated the ligand binding energy after optimizing their structure, utilizing EDISON simulator. After all, I figured out how they are linked each other and how the quantum rod grows.

  • PDF

Theoretical Study of Thiazole Adsorption on the (6,0) zigzag Single-Walled Boron Nitride Nanotube

  • Moradi, Ali Varasteh;Peyghan, Ali Ahmadi;Hashemian, Saeede;Baei, Mohammad T.
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권10호
    • /
    • pp.3285-3292
    • /
    • 2012
  • The interaction of thiazole drug with (6,0) zigzag single-walled boron nitride nanotube of finite length in gas and solvent phases was studied by means of density functional theory (DFT) calculations. In both phases, the binding energy is negative and presenting characterizes an exothermic process. Also, the binding energy in solvent phase is more than that the gas phase. Binding energy corresponding to adsorption of thiazole on the BNNT model in the gas and solvent phases was calculated to be -0.34 and -0.56 eV, and about 0.04 and 0.06 electrons is transferred from the thiazole to the nanotube in the phases. The significantly changes in binding energies and energy gap values by the thiazole adsorption, shows the high sensitivity of the electronic properties of BNNT towards the adsorption of the thiazole molecule. Frontier molecular orbital theory (FMO) and structural analyses show that the low energy level of LUMO, electron density, and length of the surrounding bonds of adsorbing atoms help to the thiazole adsorption on the nanotube. Decrease in global hardness, energy gap and ionization potential is due to the adsorption of the thiazole, and consequently, in the both phases, stability of the thiazole-attached (6,0) BNNT model is decreased and its reactivity increased. Presence of polar solvent increases the electron donor of the thiazole and the electrophilicity of the complex. This study may provide new insight to the development of functionalized boron nitride nanotubes as drug delivery systems for virtual applications.

Theoretical Characterization of Binding Mode of Organosilicon Inhibitor with p38: Docking, MD Simulation and MM/GBSA Free Energy Approach

  • Gadhe, Changdev G.;Balupuri, Anand;Kothandan, Gugan;Cho, Seung Joo
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2494-2504
    • /
    • 2014
  • P38 mitogen activated protein (MAP) kinase is an important anti-inflammatory drug target, which can be activated by responding to various stimuli such as stress and immune response. Based on the conformation of the conserved DFG loop (in or out), binding inhibitors are termed as type-I and II. Type-I inhibitors are ATP competitive, whereas type-II inhibitors bind in DFG-out conformation of allosteric pocket. It remains unclear that how these allosteric inhibitors stabilize the DFG-out conformation and interact. Organosilicon compounds provide unusual opportunity to enhance potency and diversity of drug molecules due to their low toxicity. However, very few examples have been reported to utilize this property. In this regard, we performed docking of an inhibitor (BIRB) and its silicon analog (Si-BIRB) in an allosteric binding pocket of p38. Further, molecular dynamics (MD) simulations were performed to study the dynamic behavior of the simulated complexes. The difference in the biological activity and mechanism of action of the simulated inhibitors could be explained based on the molecular mechanics/generalized Born surface area (MM/GBSA) binding free energy per residue decomposition. MM/GBSA showed that biological activities were related with calculated binding free energy of inhibitors. Analyses of the per-residue decomposed energy indicated that van der Waals and non-polar interactions were predominant in the ligand-protein interactions. Further, crucial residues identified for hydrogen bond, salt bridge and hydrophobic interactions were Tyr35, Lys53, Glu71, Leu74, Leu75, Ile84, Met109, Leu167, Asp168 and Phe169. Our results indicate that stronger hydrophobic interaction of Si-BIRB with the binding site residues could be responsible for its greater binding affinity compared with BIRB.

二中心 Huckel 法의 應用. 포화탄화수소의 C-C 切斷 및 水素의 反應性 (Application of Two Centre Huckel Method for C-C Bond Fission and Hydrogen Abstraction of Saturated Hydrocarbons)

  • 박병각;이무상
    • 대한화학회지
    • /
    • 제16권2호
    • /
    • pp.59-63
    • /
    • 1972
  • In connection with two electron binding energy of each bond of saturated hydrocarbons, C-C bond fission and hydrogen abstraction from C-H bond are discussed by means of two center Huckel method. A beautiful correlation could be noticed between the observed bond dissociation energy and the calculated bond energy except for n-butane. Bond dissociation energies between C-C bond were also related to C-C bond fission. We could also find a very close relation between the relative easiness of hydrogen abstraction and the calculated binding energy of C-H bond. In other words, C-H bonds of tertiary hydrogen have been noticed as most weakely bonded and hence the tertiary hydrogen would most easily from the paraffins. In addition, the C-H binding energy is discussed applying ionic character of C-H bond which is derived from its dipole moment (0.4D)

  • PDF

Effect of Oxygen Binding Energy on the Stability of Indium-Gallium-Zinc-Oxide Thin-Film Transistors

  • Cheong, Woo-Seok;Park, Jonghyurk;Shin, Jae-Heon
    • ETRI Journal
    • /
    • 제34권6호
    • /
    • pp.966-969
    • /
    • 2012
  • From a practical viewpoint, the topic of electrical stability in oxide thin-film transistors (TFTs) has attracted strong interest from researchers. Positive bias stress and constant current stress tests on indium-gallium-zinc-oxide (IGZO)-TFTs have revealed that an IGZO-TFT with a larger Ga portion has stronger stability, which is closely related with the strong binding of O atoms, as determined from an X-ray photoelectron spectroscopy analysis.

Evaluation of Patterns and Binding Forces of Tablets in Dissolution Processes

  • Kim, Jung-Woo
    • Journal of Pharmaceutical Investigation
    • /
    • 제15권2호
    • /
    • pp.45-52
    • /
    • 1985
  • For the model tablets using mannitol and Avicel PH 101 as excipients, the patterns of disintegration and dissolution from the differences of physical properties were investigated. It was found that the patterns in the dissolution and binding forces in the interaction of materials by estimates of solid-solid or liquid surface free energy due to cohesive or adhesive properties of materials, and solid surface free energy in binding forces of tablet should be considered as an important factor in dissolution processes.

  • PDF