Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.8.2494

Theoretical Characterization of Binding Mode of Organosilicon Inhibitor with p38: Docking, MD Simulation and MM/GBSA Free Energy Approach  

Gadhe, Changdev G. (Department of Medical Science, College of Medicine, Chosun University)
Balupuri, Anand (Department of Medical Science, College of Medicine, Chosun University)
Kothandan, Gugan (Department of Medical Science, College of Medicine, Chosun University)
Cho, Seung Joo (Department of Medical Science, College of Medicine, Chosun University)
Publication Information
Abstract
P38 mitogen activated protein (MAP) kinase is an important anti-inflammatory drug target, which can be activated by responding to various stimuli such as stress and immune response. Based on the conformation of the conserved DFG loop (in or out), binding inhibitors are termed as type-I and II. Type-I inhibitors are ATP competitive, whereas type-II inhibitors bind in DFG-out conformation of allosteric pocket. It remains unclear that how these allosteric inhibitors stabilize the DFG-out conformation and interact. Organosilicon compounds provide unusual opportunity to enhance potency and diversity of drug molecules due to their low toxicity. However, very few examples have been reported to utilize this property. In this regard, we performed docking of an inhibitor (BIRB) and its silicon analog (Si-BIRB) in an allosteric binding pocket of p38. Further, molecular dynamics (MD) simulations were performed to study the dynamic behavior of the simulated complexes. The difference in the biological activity and mechanism of action of the simulated inhibitors could be explained based on the molecular mechanics/generalized Born surface area (MM/GBSA) binding free energy per residue decomposition. MM/GBSA showed that biological activities were related with calculated binding free energy of inhibitors. Analyses of the per-residue decomposed energy indicated that van der Waals and non-polar interactions were predominant in the ligand-protein interactions. Further, crucial residues identified for hydrogen bond, salt bridge and hydrophobic interactions were Tyr35, Lys53, Glu71, Leu74, Leu75, Ile84, Met109, Leu167, Asp168 and Phe169. Our results indicate that stronger hydrophobic interaction of Si-BIRB with the binding site residues could be responsible for its greater binding affinity compared with BIRB.
Keywords
p38; Allosteric inhibitors; BIRB; Organosilicon; Docking;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Jorgensen, W. L.; Thomas, L. L. J. Chem. Inf. Model. 2008, 4, 869.
2 Miyamoto, S.; Kollman, P. A. Proteins 1993, 16, 226.   DOI   ScienceOn
3 Zwanzig, R. W. J. Chem. Phys. 1954, 22, 1420.   DOI
4 Simard, J. R.; Pawar, V.; Aust, B.; Wolf, A.; Rabiller, M.; Wulfert, S.; Robubi, A.; Kluter, S.; Ottmann, C.; Rauh, D. J. Am. Chem. Soc. 2009, 131, 18478.   DOI   ScienceOn
5 Wang, J.; Morin, P.; Wang, W.; Kollman, P. A. J. Am. Chem. Soc. 2001, 123, 5221.   DOI   ScienceOn
6 Zhao, P.; Chen, S.-K.; Cai, Y.-H.; Lu, X.; Li, Z.; Cheng, Y.-K.; Zhang, C.; Hu, X.; He, X.; Luo, H.-B. Biochim. Biophys. Acta 2013, 1834, 2089.   DOI   ScienceOn
7 Nishio, M. Phys. Chem. Chem. Phys. 2011, 13, 13873.   DOI   ScienceOn
8 Gadhe, C.; Balupuri, A.; Balasubramanian, P.; Cho, S. Anti- Cancer Agents Med. Chem. 2013, 13, 1636.   DOI
9 Gadhe, C. G.; Kothandan, G.; Cho, S. J. Arch. Pharm. Res. 2013, 36, 6.   DOI   ScienceOn
10 Gadhe, C. G.; Kothandan, G.; Cho, S. J. J. Biomol. Struct. Dyn. 2013, 31, 1251.   DOI
11 Gadhe, C. G.; Kothandan, G.; Cho, S. J. Bull. Korean Chem. Soc 2013, 34, 2467.
12 Gadhe, C. G.; Kothandan, G.; Madhavan, T.; Cho, S. J. Med. Chem. Res. 2012, 21, 1892.   DOI
13 Gadhe, C. G.; Madhavan, T.; Kothandan, G.; Cho, S. J. BMC Struct. Biol. 2011, 11, 5.   DOI   ScienceOn
14 Kothandan, G.; Gadhe, C. G.; Madhavan, T.; Choi, C. H.; Cho, S. J. Eur. J. Med. Chem. 2011, 46, 4078.   DOI   ScienceOn
15 Kothandan, G.; Madhavan, T.; Gadhe, C. G.; Cho, S. J. Med. Chem. Res. 2013, 22, 1773.   DOI
16 Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. J. Comput. Chem. 2004, 25, 1157.   DOI   ScienceOn
17 Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Proteins 2006, 65, 712.   DOI   ScienceOn
18 Kollman, P. A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W. Acc. Chem. Res. 2000, 33, 889.   DOI   ScienceOn
19 Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926.   DOI
20 Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. J. Comput. Phys. 1977, 23, 327.   DOI   ScienceOn
21 Gohlke, H.; Kiel, C.; Case, D. A. J. Mol. Biol. 2003, 330, 891.   DOI   ScienceOn
22 Genheden, S.; Nilsson, I.; Ryde, U. J. Chem. Inf. Model 2011, 51, 947.   DOI   ScienceOn
23 Hou, T.; Wang, J.; Li, Y.; Wang, W. J. Chem. Inf. Model 2010, 51, 69.
24 Fang, L.; Zhang, H.; Cui, W.; Ji, M. J. Chem. Inf. Model 2008, 48, 2030.   DOI   ScienceOn
25 Khuntawee, W.; Rungrotmongkol, T.; Hannongbua, S. J. Chem. Inf. Model 2011, 52, 76.
26 Sitkoff, D.; Sharp, K. A.; Honig, B. J. Phys. Chem. 1994, 98, 1978.   DOI   ScienceOn
27 Onufriev, A.; Bashford, D.; Case, D. A. Proteins 2004, 55, 383.   DOI   ScienceOn
28 Wang, J.; Hou, T.; Xu, X. Curr. Comput.-Aided Drug Des. 2006, 2, 287.   DOI   ScienceOn
29 Hou, T.; Wang, J.; Li, Y.; Wang, W. J. Comput. Chem. 2011, 32, 866.   DOI   ScienceOn
30 Gohlke, H.; Klebe, G. Angew. Chem. Int. Ed. 2002, 41, 2644.   DOI   ScienceOn
31 Bains, W.; Tacke, R. Curr. Opin. Drug Discov. Develop. 2003, 6, 526.
32 Craig, L. W.; Stanley, B. F.; Melissa, Y.; Mark, B. T.; Mark, L. E. Curr. Top. Med. Chem. 2007, 7, 1349.   DOI   ScienceOn
33 Branger, J.; van den Blink, B.; Weijer, S.; Madwed, J.; Bos, C. L.; Gupta, A.; Yong, C.-L.; Polmar, S. H.; Olszyna, D. P.; Hack, C. E. J. Immunol. 2002, 168, 4070.   DOI
34 Showell, G. A.; Mills, J. S. Drug Discov. Today 2003, 8, 551.   DOI   ScienceOn
35 Meanwell, N. A. J. Med. Chem. 2011, 54, 2529.   DOI   ScienceOn
36 Franz, A. K.; Wilson, S. O. J. Med. Chem. 2012, 56, 388.
37 Pargellis, C.; Tong, L.; Churchill, L.; Cirillo, P. F.; Gilmore, T.; Graham, A. G.; Grob, P. M.; Hickey, E. R.; Moss, N.; Pav, S. Nat. Struct. Mol. Biol. 2002, 9, 268.   DOI   ScienceOn
38 Eswar, N.; John, B.; Mirkovic, N.; Fiser, A.; Ilyin, V. A.; Pieper, U.; Stuart, A. C.; Marti-Renom, M. A.; Madhusudhan, M. S.; Yerkovich, B. Nucleic Acids Res. 2003, 31, 3375.   DOI   ScienceOn
39 Sybyl v. 8.1 USA, 2008.
40 Case, D.; Darden, T.; Cheatham III, T.; Simmerling, C.; Wang, J.; Duke, R.; Luo, R.; Walker, R.; Zhang, W.; Merz, K. University of California, San Francisco 2012.
41 Wang, J.; Wang, W.; Kollman, P. A.; Case, D. A. J. Mol. Graph. Model. 2006, 25, 247.   DOI   ScienceOn
42 Walker, R. C.; Crowley, M. F.; Case, D. A. J. Comput. Chem. 2008, 29, 1019.   DOI   ScienceOn
43 Badger, A. M.; Bradbeer, J. N.; Votta, B.; Lee, J. C.; Adams, J. L.; Griswold, D. E. J. Pharmacol. Exp. Ther. 1996, 279, 1453.
44 Jakalian, A.; Bush, B. L.; Jack, D. B.; Bayly, C. I. J. Comput. Chem. 2000, 21, 132.   DOI
45 Kumar, S.; Boehm, J.; Lee, J. C. Nat. Rev. Drug Discov. 2003, 2, 717.   DOI   ScienceOn
46 Peifer, C.; Wagner, G.; Laufer, S. Curr. Top. Med. Chem. 2006, 6, 113.   DOI   ScienceOn
47 Pargellis, C.; Regan, J. Curr. Opin. Investig. Drugs 2003, 4, 566.
48 Wilhelm, S.; Carter, C.; Lynch, M.; Lowinger, T.; Dumas, J.; Smith, R. A.; Schwartz, B.; Simantov, R.; Kelley, S. Nat. Rev. Drug Discov. 2006, 5, 835.   DOI   ScienceOn
49 Capdeville, R.; Buchdunger, E.; Zimmermann, J.; Matter, A. Nat. Rev. Drug Discov. 2002, 1, 493.   DOI   ScienceOn
50 Liu, Y.; Gray, N. S. Nat. Chem. Biol. 2006, 2, 358.   DOI   ScienceOn
51 Iwata, H.; Oki, H.; Okada, K.; Takagi, T.; Tawada, M.; Miyazaki, Y.; Imamura, S.; Hori, A.; Lawson, J. D.; Hixon, M. S. ACS Med. Chem. Lett. 2012, 3, 342.   DOI   ScienceOn
52 Garcia-Echeverria, C. Bioorg. Med. Chem. Lett. 2010, 20, 4308.   DOI   ScienceOn
53 Converso, A.; Hartingh, T.; Garbaccio, R. M.; Tasber, E.; Rickert, K.; Fraley, M. E.; Yan, Y.; Kreatsoulas, C.; Stirdivant, S.; Drakas, B. Bioorg. Med. Chem. Lett. 2009, 19, 1240.   DOI   ScienceOn
54 Cuenda, A.; Rousseau, S. Biochim. Biophys. Acta 2007, 1773, 1358.   DOI   ScienceOn
55 Burke, J. R.; Pattoli, M. A.; Gregor, K. R.; Brassil, P. J.; MacMaster, J. F.; McIntyre, K. W.; Yang, X.; Iotzova, V. S.; Clarke, W.; Strnad, J. J. Biol. Chem. 2003, 278, 1450.   DOI   ScienceOn
56 Jeffrey, L. J.-L.; Robert, A. C. Curr. Top. Med. Chem. 2007, 7, 1394.   DOI   ScienceOn
57 Dietrich, J.; Hulme, C.; Hurley, L. H. Bioorg. Med. Chem. 2010, 18, 5738.   DOI   ScienceOn
58 Schindler, J.; Monahan, J.; Smith, W. J. Dent. Res. 2007, 86, 800.   DOI   ScienceOn
59 Lindsley, C. W.; Barnett, S. F.; Layton, M. E.; Bilodeau, M. T. Curr. Can. Drug Targets 2008, 8, 7.   DOI   ScienceOn
60 Barnes, M. J.; Conroy, R.; Miller, D. J.; Mills, J. S.; Montana, J. G.; Pooni, P. K.; Showell, G. A.; Walsh, L. M.; Warneck, J. B. Bioorg. Med. Chem. Lett. 2007, 17, 354.   DOI   ScienceOn
61 Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98, 10089.   DOI   ScienceOn
62 Kothandan, G.; Gadhe, C. G.; Cho, S. J. PloS One 2012, 7, e32864.   DOI   ScienceOn