• Title/Summary/Keyword: Binary learning

Search Result 311, Processing Time 0.04 seconds

An ADHD Diagnostic Approach Based on Binary-Coded Genetic Algorithm and Extreme Learning Machine

  • Sachnev, Vasily;Suresh, Sundaram
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.4
    • /
    • pp.111-117
    • /
    • 2016
  • An accurate approach for diagnosis of attention deficit hyperactivity disorder (ADHD) is presented in this paper. The presented technique efficiently classifies three subtypes of ADHD (ADHD-C, ADHD-H, ADHD-I) and typically developing control (TDC) by using only structural magnetic resonance imaging (MRI). The research examines structural MRI of the hippocampus from the ADHD-200 database. Each available MRI has been processed by a region-of-interest (ROI) to build a set of features for further analysis. The presented ADHD diagnostic approach unifies feature selection and classification techniques. The feature selection technique based on the proposed binary-coded genetic algorithm searches for an optimal subset of features extracted from the hippocampus. The classification technique uses a chosen optimal subset of features for accurate classification of three subtypes of ADHD and TDC. In this study, the famous Extreme Learning Machine is used as a classification technique. Experimental results clearly indicate that the presented BCGA-ELM (binary-coded genetic algorithm coupled with Extreme Learning Machine) efficiently classifies TDC and three subtypes of ADHD and outperforms existing techniques.

A Kernel Approach to Discriminant Analysis for Binary Classification

  • Shin, Yang-Kyu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.12 no.2
    • /
    • pp.83-93
    • /
    • 2001
  • We investigate a kernel approach to discriminant analysis for binary classification as a machine learning point of view. Our view of the kernel approach follows support vector method which is one of the most promising techniques in the area of machine learning. As usual discriminant analysis, the kernel method can discriminate an object most likely belongs to. Moreover, it has some advantage over discriminant analysis such as data compression and computing time.

  • PDF

Acceleration the Convergence and Improving the Learning Accuracy of the Back-Propagation Method (Back-Propagation방법의 수렴속도 및 학습정확도의 개선)

  • 이윤섭;우광방
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.8
    • /
    • pp.856-867
    • /
    • 1990
  • In this paper, the convergence and the learning accuracy of the back-propagation (BP) method in neural network are investigated by 1) analyzing the reason for decelerating the convergence of BP method and examining the rapid deceleration of the convergence when the learning is executed on the part of sigmoid activation function with the very small first derivative and 2) proposing the modified logistic activation function by defining, the convergence factor based on the analysis. Learning on the output patterns of binary as well as analog forms are tested by the proposed method. In binary output patter, the test results show that the convergence is accelerated and the learning accuracy is improved, and the weights and thresholds are converged so that the stability of neural network can be enhanced. In analog output patter, the results show that with extensive initial transient phenomena the learning error is decreased according to the convergence factor, subsequently the learning accuracy is enhanced.

  • PDF

Could Decimal-binary Vector be a Representative of DNA Sequence for Classification?

  • Sanjaya, Prima;Kang, Dae-Ki
    • International journal of advanced smart convergence
    • /
    • v.5 no.3
    • /
    • pp.8-15
    • /
    • 2016
  • In recent years, one of deep learning models called Deep Belief Network (DBN) which formed by stacking restricted Boltzman machine in a greedy fashion has beed widely used for classification and recognition. With an ability to extracting features of high-level abstraction and deal with higher dimensional data structure, this model has ouperformed outstanding result on image and speech recognition. In this research, we assess the applicability of deep learning in dna classification level. Since the training phase of DBN is costly expensive, specially if deals with DNA sequence with thousand of variables, we introduce a new encoding method, using decimal-binary vector to represent the sequence as input to the model, thereafter compare with one-hot-vector encoding in two datasets. We evaluated our proposed model with different contrastive algorithms which achieved significant improvement for the training speed with comparable classification result. This result has shown a potential of using decimal-binary vector on DBN for DNA sequence to solve other sequence problem in bioinformatics.

Competitive Learning Neural Network with Binary Reinforcement and Constant Adaptation Gain (일정적응 이득과 이진 강화함수를 갖는 경쟁 학습 신경회로망)

  • Seok, Jin-Wuk;Cho, Seong-Won;Choi, Gyung-Sam
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.326-328
    • /
    • 1994
  • A modified Kohonen's simple Competitive Learning(SCL) algorithm which has binary reinforcement function and a constant adaptation gain is proposed. In contrast to the time-varing adaptation gain of the original Kohonen's SCL algorithm, the proposed algorithm uses a constant adaptation gain, and adds a binary reinforcement function in order to compensate for the lowered learning ability of SCL due to the constant adaptation gain. Since the proposed algorithm does not have the complicated multiplication, it's digital hardware implementation is much easier than one of the original SCL.

  • PDF

Optimal Synthesis Method for Binary Neural Network using NETLA (NETLA를 이용한 이진 신경회로망의 최적 합성방법)

  • Sung, Sang-Kyu;Kim, Tae-Woo;Park, Doo-Hwan;Jo, Hyun-Woo;Ha, Hong-Gon;Lee, Joon-Tark
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2726-2728
    • /
    • 2001
  • This paper describes an optimal synthesis method of binary neural network(BNN) for an approximation problem of a circular region using a newly proposed learning algorithm[7] Our object is to minimize the number of connections and neurons in hidden layer by using a Newly Expanded and Truncated Learning Algorithm(NETLA) for the multilayer BNN. The synthesis method in the NETLA is based on the extension principle of Expanded and Truncated Learning(ETL) and is based on Expanded Sum of Product (ESP) as one of the boolean expression techniques. And it has an ability to optimize the given BNN in the binary space without any iterative training as the conventional Error Back Propagation(EBP) algorithm[6] If all the true and false patterns are only given, the connection weights and the threshold values can be immediately determined by an optimal synthesis method of the NETLA without any tedious learning. Futhermore, the number of the required neurons in hidden layer can be reduced and the fast learning of BNN can be realized. The superiority of this NETLA to other algorithms was proved by the approximation problem of one circular region.

  • PDF

The Study on the Development of the Educational Contents for the Natural Number Binary System (자연수의 이진체계 교육자료 개발에 관한 연구)

  • Jang, Junghoon;Kim, Chongwoo
    • Journal of The Korean Association of Information Education
    • /
    • v.19 no.4
    • /
    • pp.525-532
    • /
    • 2015
  • Unplugged has been widely used as an instrument for teaching the basic principles of Computer Science. This study presents the teaching contents developed for the children without any knowledge of binary numbers. which successfully guided them to understand the natural number binary system. The level of the pre-lesson for this learning requires counting numbers, matching numbers with cards, and arranging numbers. The activity-based learning is provided for describing natural numbers with the binary system and finding out them in everyday life. To check the adequacy of these materials on their organization and assessment they were tested at the classroom, which showed effective about the knowledge, the attitude and the generalization.

Deep Hashing for Semi-supervised Content Based Image Retrieval

  • Bashir, Muhammad Khawar;Saleem, Yasir
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3790-3803
    • /
    • 2018
  • Content-based image retrieval is an approach used to query images based on their semantics. Semantic based retrieval has its application in all fields including medicine, space, computing etc. Semantically generated binary hash codes can improve content-based image retrieval. These semantic labels / binary hash codes can be generated from unlabeled data using convolutional autoencoders. Proposed approach uses semi-supervised deep hashing with semantic learning and binary code generation by minimizing the objective function. Convolutional autoencoders are basis to extract semantic features due to its property of image generation from low level semantic representations. These representations of images are more effective than simple feature extraction and can preserve better semantic information. Proposed activation and loss functions helped to minimize classification error and produce better hash codes. Most widely used datasets have been used for verification of this approach that outperforms the existing methods.

An Improvement of AdaBoost using Boundary Classifier

  • Lee, Wonju;Cheon, Minkyu;Hyun, Chang-Ho;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.2
    • /
    • pp.166-171
    • /
    • 2013
  • The method proposed in this paper can improve the performance of the Boosting algorithm in machine learning. The proposed Boundary AdaBoost algorithm can make up for the weak points of Normal binary classifier using threshold boundary concepts. The new proposed boundary can be located near the threshold of the binary classifier. The proposed algorithm improves classification in areas where Normal binary classifier is weak. Thus, the optimal boundary final classifier can decrease error rates classified with more reasonable features. Finally, this paper derives the new algorithm's optimal solution, and it demonstrates how classifier accuracy can be improved using the proposed Boundary AdaBoost in a simulation experiment of pedestrian detection using 10-fold cross validation.

Detection of Surface Water Bodies in Daegu Using Various Water Indices and Machine Learning Technique Based on the Landsat-8 Satellite Image (Landsat-8 위성영상 기반 수분지수 및 기계학습을 활용한 대구광역시의 지표수 탐지)

  • CHOUNG, Yun-Jae;KIM, Kyoung-Seop;PARK, In-Sun;CHUNG, Youn-In
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • Detection of surface water features including river, wetland, reservoir from the satellite imagery can be utilized for sustainable management and survey of water resources. This research compared the water indices derived from the multispectral bands and the machine learning technique for detecting the surface water features from he Landsat-8 satellite image acquired in Daegu through the following steps. First, the NDWI(Normalized Difference Water Index) image and the MNDWI(Modified Normalized Difference Water Index) image were separately generated using the multispectral bands of the given Landsat-8 satellite image, and the two binary images were generated from these NDWI and MNDWI images, respectively. Then SVM(Support Vector Machine), the widely used machine learning techniques, were employed to generate the land cover image and the binary image was also generated from the generated land cover image. Finally the error matrices were used for measuring the accuracy of the three binary images for detecting the surface water features. The statistical results showed that the binary image generated from the MNDWI image(84%) had the relatively low accuracy than the binary image generated from the NDWI image(94%) and generated by SVM(96%). And some misclassification errors occurred in all three binary images where the land features were misclassified as the surface water features because of the shadow effects.