• Title/Summary/Keyword: Binary image

Search Result 987, Processing Time 0.035 seconds

Ultrasonic Cavitation Effect Observation Using Bubble Cloud Image Analysis (기포군 영상분석을 통한 초음파 캐비테이션 현상의 변화 관찰)

  • Noh, Si-Cheol;Kim, Ju-Young;Kim, Jin-Su;Kang, Jung-Hoon;Choi, Heung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.124-130
    • /
    • 2011
  • In this study, in order to evaluate the yield of bubble by ultrasonic cavitation in HIFU sonication, the bubble image analysis was performed. The changing phenomenon of cavitation effect according to the sonication condition was discussed by analyzing the bubble image. Especially the appearance of bubble cloud, the size of micro-bubble, and the yield of bubble were considered. The 500 KHz and 1.1 MHz concave type ultrasonic transducers were used for HIFU sonication. Computer controlled digital camera was used to obtain the bubble image, and the binary image processing(binarization coefficient : 0.15) was performed to analyze them. In results of 500 KHz and 1.1 MHz transducer, the area of bubble cloud was increased in proportion to the rise in sonication intensity($R^2$ : 0.7031 and 0.811). The mean size of single microbubble was measured as 98.18 um in 500 KHz sonication, and 63.38 um in 1.1 MHz sonication. In addition, the amount of produced bubble was increased in proportion to sonication intensity. Through the result of this study and further study for variable image processing method, the quantitative evaluation of ultrasonic cavitation effects in HIFU operation could be possible with the linearity associated with the sonication conditions.

Head Pose Estimation with Accumulated Historgram and Random Forest (누적 히스토그램과 랜덤 포레스트를 이용한 머리방향 추정)

  • Mun, Sung Hee;Lee, Chil woo
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.38-43
    • /
    • 2016
  • As smart environment is spread out in our living environments, the needs of an approach related to Human Computer Interaction(HCI) is increases. One of them is head pose estimation. it related to gaze direction estimation, since head has a close relationship to eyes by the body structure. It's a key factor in identifying person's intention or the target of interest, hence it is an essential research in HCI. In this paper, we propose an approach for head pose estimation with pre-defined several directions by random forest classifier. We use canny edge detector to extract feature of the different facial image which is obtained between input image and averaged frontal facial image for extraction of rotation information of input image. From that, we obtain the binary edge image, and make two accumulated histograms which are obtained by counting the number of pixel which has non-zero value along each of the axes. This two accumulated histograms are used to feature of the facial image. We use CAS-PEAL-R1 Dataset for training and testing to random forest classifier, and obtained 80.6% accuracy.

Extracting the Point of Impact from Simulated Shooting Target based on Image Processing (영상처리 기반 모의 사격 표적지 탄착점 추출)

  • Lee, Tae-Guk;Lim, Chang-Gyoon;Kim, Kang-Chul;Kim, Young-Min
    • Journal of Internet Computing and Services
    • /
    • v.11 no.1
    • /
    • pp.117-128
    • /
    • 2010
  • There are many researches related to a simulated shooting training system for replacing the real military and police shooting training. In this paper, we propose the point of impact from a simulated shooting target based on image processing instead of using a sensor based approach. The point of impact is extracted by analyzing the image extracted from the camera on the muzzle of a gun. The final shooting result is calculated by mapping the target and the coordinates of the point of impact. The recognition system is divided into recognizing the projection zone, extracting the point of impact on the projection zone, and calculating the shooting result from the point of impact. We find the vertices of the projection zone after converting the captured image to the binary image and extract the point of impact in it. We present the extracting process step by step and provide experiments to validate the results. The experiments show that exact vertices of the projection area and the point of impact are found and a conversion result for the final result is shown on the interface.

Encryption and decryption using phase mapping of gray scale image based on a phase-shifting interferometry principle (위상천이 간섭계 원리에 기반한 계조도 영상의 위상 매핑을 이용한 암호화 및 복호화)

  • Seok-Hee Jeon;Sang-Keun Gil
    • Journal of IKEEE
    • /
    • v.28 no.3
    • /
    • pp.271-278
    • /
    • 2024
  • An encryption and decryption method using phase mapping of a gray scale image based on a phase-shifting interferometry principle is proposed in which an encrypted image is formed into complex digital hologram function by symmetric security key in the proposed encryption system.. The gray scale image to be encrypted is converted to phase mapped function that is mixed with a randomly generated binary security encryption key and is used as an input. Decryption of phase information is performed by complex digital hologram and security encryption key, which reconstructs the original gray scale image by phase unmapping. The proposed method confirms that correlation coefficient of the decrypted image is 0.995 when quantization level of CCD is 8-bits(28=256 levels).

Design of Vision Based Punching Machine having Serial Communication

  • Lee, Young-Choon;Lee, Seong-Cheol;Kim, Seong-Min
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2430-2434
    • /
    • 2005
  • Automatic FPC punching instrument for the improvement of working condition and cost saving is introduced in this paper. FPC(flexible printed circuit) is used to detect the contact position of K/B and button like a cellular phone. Depending on the quality of the printed ink and position of reference punching point to the FPC, the resistance and current are varied to the malfunctioning values. The size of reference punching point is 2mm and the above. Because the punching operation is done manually, the accuracy of the punching degree is varied with operator's condition. Recently, The punching accuracy has deteriorated severely to the 2mm punching reference hall so that assembly of the K/B has hardly done. To improve this manual punching operation to the FPC, automatic FPC punching system is introduced. Precise mechanical parts like a 5-step stepping motor and ball screw mechanism are designed and tested and low cost PC camera is used for the sake of cost down instead of using high quality vision systems for the FA. 3D Mechanical design tool(Pro/E) is used to manage the exact tolerance circumstances and avoid design failures. Simulation is performed to make the complete vision based punching machine before assembly, and this procedure led to the manufacturing cost saving. As the image processing algorithms, dilation, erosion, and threshold calculation is applied to obtain an exact center position from the FPC print marks. These image processing algorithms made the original images having various noises have clean binary pixels which is easy to calculate the center position of print marks. Moment and Least square method are used to calculate the center position of objects. In this development circumstance, Moment method was superior to the Least square one at the calculation of speed and against noise. Main control panel is programmed by Visual C++ and graphical Active X for the whole management of vision based automatic punching machine. Operating modes like manual, calibration, and automatic mode are added to the main control panel for the compensation of bad FPC print conditions and mechanical tolerance occurring in the case of punch and die reassembly. Test algorithms and programs showed good results to the designed automatic punching system and led to the increase of productivity and huge cost down to law material like FPC by avoiding bad quality.

  • PDF

Accuracy Assessment of Unsupervised Change Detection Using Automated Threshold Selection Algorithms and KOMPSAT-3A (자동 임계값 추출 알고리즘과 KOMPSAT-3A를 활용한 무감독 변화탐지의 정확도 평가)

  • Lee, Seung-Min;Jeong, Jong-Chul
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.975-988
    • /
    • 2020
  • Change detection is the process of identifying changes by observing the multi-temporal images at different times, and it is an important technique in remote sensing using satellite images. Among the change detection methods, the unsupervised change detection technique has the advantage of extracting rapidly the change area as a binary image. However, it is difficult to understand the changing pattern of land cover in binary images. This study used grid points generated from seamless digital map to evaluate the satellite image change detection results. The land cover change results were extracted using multi-temporal KOMPSAT-3A (K3A) data taken by Gimje Free Trade Zone and change detection algorithm used Spectral Angle Mapper (SAM). Change detection results were presented as binary images using the methods Otsu, Kittler, Kapur, and Tsai among the automated threshold selection algorithms. To consider the seasonal change of vegetation in the change detection process, we used the threshold of Differenced Normalized Difference Vegetation Index (dNDVI) through the probability density function. The experimental results showed the accuracy of the Otsu and Kapur was the highest at 58.16%, and the accuracy improved to 85.47% when the seasonal effects were removed through dNDVI. The algorithm generated based on this research is considered to be an effective method for accuracy assessment and identifying changes pattern when applied to unsupervised change detection.

Development of a Malignancy Potential Binary Prediction Model Based on Deep Learning for the Mitotic Count of Local Primary Gastrointestinal Stromal Tumors

  • Jiejin Yang;Zeyang Chen;Weipeng Liu;Xiangpeng Wang;Shuai Ma;Feifei Jin;Xiaoying Wang
    • Korean Journal of Radiology
    • /
    • v.22 no.3
    • /
    • pp.344-353
    • /
    • 2021
  • Objective: The mitotic count of gastrointestinal stromal tumors (GIST) is closely associated with the risk of planting and metastasis. The purpose of this study was to develop a predictive model for the mitotic index of local primary GIST, based on deep learning algorithm. Materials and Methods: Abdominal contrast-enhanced CT images of 148 pathologically confirmed GIST cases were retrospectively collected for the development of a deep learning classification algorithm. The areas of GIST masses on the CT images were retrospectively labelled by an experienced radiologist. The postoperative pathological mitotic count was considered as the gold standard (high mitotic count, > 5/50 high-power fields [HPFs]; low mitotic count, ≤ 5/50 HPFs). A binary classification model was trained on the basis of the VGG16 convolutional neural network, using the CT images with the training set (n = 108), validation set (n = 20), and the test set (n = 20). The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated at both, the image level and the patient level. The receiver operating characteristic curves were generated on the basis of the model prediction results and the area under curves (AUCs) were calculated. The risk categories of the tumors were predicted according to the Armed Forces Institute of Pathology criteria. Results: At the image level, the classification prediction results of the mitotic counts in the test cohort were as follows: sensitivity 85.7% (95% confidence interval [CI]: 0.834-0.877), specificity 67.5% (95% CI: 0.636-0.712), PPV 82.1% (95% CI: 0.797-0.843), NPV 73.0% (95% CI: 0.691-0.766), and AUC 0.771 (95% CI: 0.750-0.791). At the patient level, the classification prediction results in the test cohort were as follows: sensitivity 90.0% (95% CI: 0.541-0.995), specificity 70.0% (95% CI: 0.354-0.919), PPV 75.0% (95% CI: 0.428-0.933), NPV 87.5% (95% CI: 0.467-0.993), and AUC 0.800 (95% CI: 0.563-0.943). Conclusion: We developed and preliminarily verified the GIST mitotic count binary prediction model, based on the VGG convolutional neural network. The model displayed a good predictive performance.

The Malware Detection Using Deep Learning based R-CNN (딥러닝 기반의 R-CNN을 이용한 악성코드 탐지 기법)

  • Cho, Young-Bok
    • Journal of Digital Contents Society
    • /
    • v.19 no.6
    • /
    • pp.1177-1183
    • /
    • 2018
  • Recent developments in machine learning have attracted a lot of attention for techniques such as machine learning and deep learning that implement artificial intelligence. In this paper, binary malicious code using deep learning based R-CNN is imaged and the feature is extracted from the image to classify the family. In this paper, two steps are used in deep learning to image malicious code using CNN. And classify the characteristics of the family of malicious codes using R-CNN. Generate malicious code as an image, extract features, classify the family, and automatically classify the evolution of malicious code. The detection rate of the proposed method is 93.4% and the accuracy is 98.6%. In addition, the CNN processing speed for image processing of malicious code is 23.3 ms, and the R-CNN processing speed is 4ms to classify one sample.

Automatic Liver Segmentation by using Gray Value Portion in Enhanced Abdominal CT Image (조영제를 사용한 복부CT영상에서 명암값 비율을 이용한 간의 자동 추출)

  • Yu, Seung-Hwa;Jo, Jun-Sik;No, Seung-Mu;Sin, Gyeong-Suk;Park, Jong-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.2
    • /
    • pp.179-190
    • /
    • 2001
  • In this proposed study, observing and analyzing contrast enhanced abdominal CT images, we segmented the liver automatically. We computed the ratio of each gray value from the estimated gray value range. With the average value of mesh image, we distinguished the liver from the noise parts. We divided the region based on immersion simulation. The threshold value is determined from the mesh image which is generated from each gray value portion of the liver and is used in dividing the liver to the noise region. To get the outline of the liver, we generated template image which represents the lump of the liver, and subtracted it from the binary image. With the results we use the proposed algorithm using 8-connectivity instead of the present opening algorithm, to reduce the processing time. We computed the volume from the segmented organ size and presented a clinical demonstration with the animal experiment

  • PDF

3-D Object Tracking using 3-D Information and Optical Correlator in the Stereo Vision System (스테레오 비젼 시스템에서 3차원정보와 광 상관기를 이용한 3차원 물체추적 방법)

  • 서춘원;이승현;김은수
    • Journal of Broadcast Engineering
    • /
    • v.7 no.3
    • /
    • pp.248-261
    • /
    • 2002
  • In this paper, we proposed a new 3-dimensional(3-D) object-tracking algorithm that can control a stereo camera using a variable window mask supported by which uses ,B-D information and an optical BPEJTC. Hence, three-dimensional information characteristics of a stereo vision system, distance information from the stereo camera to the tracking object. can be easily acquired through the elements of a stereo vision system. and with this information, we can extract an area of the tracking object by varying window masks. This extractive area of the tracking object is used as the next updated reference image. furthermore, by carrying out an optical BPEJTC between a reference image and a stereo input image the coordinates of the tracking objects location can be acquired, and with this value a 3-D object tracking can be accomplished through manipulation of the convergence angie and a pan/tilt of a stereo camera. From the experimental results, the proposed algorithm was found to be able to the execute 3-D object tracking by extracting the area of the target object from an input image that is independent of the background noise in the stereo input image. Moreover a possible implementation of a 3-D tele-working or an adaptive 3-D object tracker, using the proposed algorithm is suggested.