Automatic Liver Segmentation by using Gray Value Portion in Enhanced Abdominal CT Image

조영제를 사용한 복부CT영상에서 명암값 비율을 이용한 간의 자동 추출

  • 유승화 (충남대학교 공학대학 정보통신공학과) ;
  • 조준식 (충남대학교 의과대학 진단방사선과) ;
  • 노승무 (충남대학교 일반외과) ;
  • 신경숙 (충남대학교 의과대학 진단방사선과) ;
  • 박종원 (충남대학교 공학대학 정보통신공학과)
  • Published : 2001.03.01

Abstract

In this proposed study, observing and analyzing contrast enhanced abdominal CT images, we segmented the liver automatically. We computed the ratio of each gray value from the estimated gray value range. With the average value of mesh image, we distinguished the liver from the noise parts. We divided the region based on immersion simulation. The threshold value is determined from the mesh image which is generated from each gray value portion of the liver and is used in dividing the liver to the noise region. To get the outline of the liver, we generated template image which represents the lump of the liver, and subtracted it from the binary image. With the results we use the proposed algorithm using 8-connectivity instead of the present opening algorithm, to reduce the processing time. We computed the volume from the segmented organ size and presented a clinical demonstration with the animal experiment

제안된 연구에서는 조영제를 사용한 복부 CT 영상에 대한 특성을 분석함으로써 간에 대한 자동추출을 시행하였다. 영상에 나타난 명암값을 지형적 고도정보로 해석하는 침수실험에 근거하여 영역을 분리하였고 임계값에 의하여 장기 내부의 국부최대점들을 제거함으로써 장기에 해당하는 부분들을 합병하였다. 임계값은 장기를 구성하는 각 명암값의 비율에 의하여 생성된 메쉬영상으로부터 결정되었고 간과 노이즈 영역의 분리에 사용되었다. 장기의 외곽선추출을 위해서는 장기의 전반적인 형태를 나타내는 템플리트를 생성한 후 이진 영상에서 서브트랙션하는 방법을 사용하였다. 템플리트의 생성과정에서는 처리시간이 긴 기존의 오프닝 방법을 사용하지 않고 8-연결성에 의한 방법을 사용함으로써 처리속도를 단축하였다. 추출된 장기의 면적을 토대로 체적계산을 시행하였고 동물실험을 통하여 임상 실험치를 제시하였다.

Keywords

References

  1. A. A. Moss, M. A. Frieman, and A. C. Broto, Determination of Liver, Kidney, and Spleen Volumes by Computed Tomography : An Experimental Study in Dogs, Journal of Computer Assisted Tomography 5(1): 12-14, 1981 https://doi.org/10.1097/00004728-198102000-00002
  2. B. Heymsfield, T. Fulenwider , B. Nordlinger, P. Sones, and M. Kutner. Accurate measurement of liver, kidney, and spleen, volume, and mass by computerized axial tomography, Ann Intern Med 90:185-7. 1979
  3. Liver Volume Measurements and Three dimensional Display from MR Images, Radiology G.R.McNeal;W.H.Maynard;R.A.Branch;T.A.Powers;P.A.Arns;K.Gunter;J.M.Fitzpatrick;C.L.partain
  4. G. R. McNeal, W. H. Maynard, R. A. Branch, T. A. Powers, P. A. Arns, K. Gunter, J. M. Fitzpatrick and C. L. partain, Liver Volume Measurements and Three dimensional Display from MR Images, Radiology, 169, 1988
  5. R. D. Henkei, Segmentation in Scale Space, Proceedings of 6th international conference. On Computer Analysis of Images and Pattern', CAIP, Prague 1995
  6. H. E. Burdick, Digital Imaging, theory and application McGraw_Hill inc, 1997
  7. S. E. Umbaugh, Computer Vision and Image processing : A Practical Approach Using CVIPtools, Prentice Hall PT R, 1988
  8. D. H. Ballard and C. M. computer Vision, Prentice Hall, inc, 1982
  9. L. Gao, D. Health, B. Kuszyk, E. Fishman, Automatic Liver Segmentation Technique for Three-dimensional Visualization of CT Data, Radiology, pp. 359-364, 1996
  10. K. T. Bae, M. L. Giger, H. MacMahon, and K. Doi, Automatic segmentation of liver structure in CT images, Med. Phys. 20 (1), 1993 https://doi.org/10.1118/1.597064
  11. E. L. Chen, P. C. Chung, C. L. Chen, H. M. Tsai, and C. I. Chang, An Automatic Diagnostic System for CT Liver Image Classification, IEEE Trans. Biomed. Eng. Vol. 45, pp783-794, 1998 https://doi.org/10.1109/10.678613
  12. L. A. Farjo, D. M.Williams, P. H. Bland, I. R. Francis and C. R. Meyer, Determination of Liver Volume from CT Scans Using Histogram Cluster Analysis., Comput. Assist Tomogr, Vol.16, no.5, 1992
  13. T. McInerney, D. Terzopoilos, Topology Adaptive Deformable Surfaces for Medical Image Volume Segmentation, IEEE Trans. Med. Imag., vol. 18, no. 10, Oct, 1999 https://doi.org/10.1109/42.811261
  14. L. Gao, D. G. Heath and E. Fishman, Abdominal Image Segmentation Using Three-Dimensional Deformable Models, Inves. Radio., vol 33, No.6, 348-355, 1998
  15. A. Yezzi, S. Kichenassamy, A. Kumar, A Geometric Snake Model for Segmentation of medical Imagery, IEEE Trans. Med. Imag., vol. 16, 1997 https://doi.org/10.1109/42.563665
  16. M. Unser, Sum and Difference Histograms for Texture Classification, IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI, No 1, JAN, 1986
  17. A. L. Victors and J. W. Modestino, A maximum likelihood approsch to texture classification, IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-4, JAN, 1982
  18. H. Derin, and H. Elliott, Modeling and Segmentation of Noisy and Textured Images Using Gibbs Random Fields, IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-9, No.1, JAN, 1987
  19. J. E. Koss, F. D. Newman, T. K. Johnson and D. L. Kirch, Abdominal Organ Segmentation Using texture transforms and Hopfield Neutal Network, IEEE Trans. Med. Imag. vol. 18, no. 7, pp. 640-648, 1999 https://doi.org/10.1109/42.790463
  20. J. S. Bleck, U. Ranft, M. Gebel, H. Hecker, M. Westhoff-Bleck, C. Thiesemann, S. Wagner, and M. Manns, Random Field models in the textural Analysis of Ultrasonic Images of the Liver, IEEE Trans. Med. Imag. Vol. 15, no. 6, pp 796-801, 1996 https://doi.org/10.1109/42.544497
  21. C. B. Ahn, Y. C. Song and D. J. Park, Adaptive Template Filtering for Signal-to-Noise Ratio Enhancement in Magnetic Resonance imaging, IEEE Trans. Med. Imag., vol. 18, no. 6, June, 1999 https://doi.org/10.1109/42.781019
  22. S. W. Yoo, Y. C. Sung, J. S. Cho, S. M. Noh, K. S. Shin. and J. W. Park, Segmentation of Liver and Spleen by using Lattice Estimation System in Abdominal CT Image, ITC-CSCC'99, vol. 2, pp.991-994, 1999
  23. L. Vincent, P. Soille, Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations, IEEE Trans. Pattern Anal. Machine Intell. 13(6) 583-593: 1991 https://doi.org/10.1109/34.87344
  24. W. E. Higgins and E. J. Ojard, Interactive Morphological Watershed Analysis for 3D Medical Images, Computerized Medical Imaging and Graphics, vol. 17, pp387-395, 1993 https://doi.org/10.1016/0895-6111(93)90033-J
  25. P. Salembier and M. Pardas, Hierarchical morphological segmentation for image sequence coding, IEEE Transactions Image Processing, vol. 3, no. 5, pp.639-651, Sept.1994 https://doi.org/10.1109/83.334980
  26. S. W. Yoo, J. S. Cho, S. M. Noh, K. S. Shin, and J. W. Park, Advanced Liver Segmentation by Using Pixel Ratio in Abdominal CT Image, ITC-CSCC'2000,vol.1, p.39-42, 2000
  27. K. P. Philip, E. L. Dove, D. D. Mcpherson, N. L. Gotterner, M. J. Vonesh, W. Stanford, J. E. Reed, J. A. Rumberger, and K. B. Chandran, Automatic Detection of Myocardinal Contours in Cine-Computed Tomographic Images, IEEE Trans. Med. Imag. vol. 13, no. 2, 1994 https://doi.org/10.1109/42.293917
  28. M. E. Brummer, R. M. Mersereau, R. L. Eisner, and R. J. Lewine, Automatic Detection of Brain Countours in MRI Data Sets, IEEE Trans. Med. Imag. vol. 12, no. 2, 1993 https://doi.org/10.1109/42.232244